Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Exp Biol ; 224(11)2021 06 01.
Article in English | MEDLINE | ID: mdl-34109984

ABSTRACT

To conceal themselves on the seafloor, European cuttlefish, Sepia officinalis, express a large repertoire of body patterns. Scenes with 3D relief are especially challenging because it is not possible either to directly recover visual depth from the 2D retinal image or for the cuttlefish to alter its body shape to resemble nearby objects. Here, we characterised cuttlefish camouflage responses to 3D relief, and to cast shadows, which are complementary depth cues. Animals were recorded in the presence of cylindrical objects of fixed (15 mm) diameter, but varying in height, greyscale and strength of cast shadows, and to corresponding 2D pictorial images. With the cylinders, the cuttlefish expressed a '3D' body pattern, which is distinct from previously described Uniform, Mottle and Disruptive camouflage patterns. This pattern was insensitive to variation in object height, contrast and cast shadow, except when shadows were most pronounced, in which case the body patterns resembled those used on the 2D backgrounds. This suggests that stationary cast shadows are not used as visual depth cues by cuttlefish, and that rather than directly matching the 2D retinal image, the camouflage response is a two-stage process whereby the animal first classifies the physical environment and then selects an appropriate pattern. Each type of pattern is triggered by specific cues that may compete, allowing the animal to select the most suitable camouflage, so the camouflage response is categorical rather than continuously variable. These findings give unique insight into how an invertebrate senses its visual environment to generate the body pattern response.


Subject(s)
Sepia , Animals , Decapodiformes , Skin Pigmentation , Vision, Ocular , Visual Perception
2.
Proc Biol Sci ; 283(1826): 20160062, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26984626

ABSTRACT

Humans use shading as a cue to three-dimensional form by combining low-level information about light intensity with high-level knowledge about objects and the environment. Here, we examine how cuttlefish Sepia officinalis respond to light and shadow to shade the white square (WS) feature in their body pattern. Cuttlefish display the WS in the presence of pebble-like objects, and they can shade it to render the appearance of surface curvature to a human observer, which might benefit camouflage. Here we test how they colour the WS on visual backgrounds containing two-dimensional circular stimuli, some of which were shaded to suggest surface curvature, whereas others were uniformly coloured or divided into dark and light semicircles. WS shading, measured by lateral asymmetry, was greatest when the animal rested on a background of shaded circles and three-dimensional hemispheres, and less on plain white circles or black/white semicircles. In addition, shading was enhanced when light fell from the lighter side of the shaded stimulus, as expected for real convex surfaces. Thus, the cuttlefish acts as if it perceives surface curvature from shading, and takes account of the direction of illumination. However, the direction of WS shading is insensitive to the directions of background shading and illumination; instead the cuttlefish tend to turn to face the light source.


Subject(s)
Cues , Depth Perception , Sepia/physiology , Visual Perception , Animals , Photic Stimulation
3.
Curr Biol ; 25(1): R10-2, 2015 Jan 05.
Article in English | MEDLINE | ID: mdl-25562291
4.
Zootaxa ; 3821(3): 321-36, 2014 Jun 23.
Article in English | MEDLINE | ID: mdl-24989747

ABSTRACT

A new genus and species of speleophriid copepod, Mexicophria cenoticola gen. et sp. nov., is described based on material collected from a cenote in the Yucatan Peninsula of Mexico. It is characterised by relatively reduced fifth legs that are located adjacent to the ventral midline in both sexes, by the possession of a bulbous swelling on the first antennulary segment in both sexes, and by the reduced setation of the swimming legs. The presence of just one inner margin seta on the second endopodal segment of legs 2 to 4 is a unique feature for the family. A phylogenetic analysis places the new genus on a basal lineage of the family together with its sister taxon, Boxshallia Huys, 1988, from Lanzarote in the Canary Islands, and recovers the existing genera as monophyletic units. The zoogeography is discussed at local, regional, ocean basin  and global scales.


Subject(s)
Copepoda/classification , Phylogeny , Animal Distribution , Animal Structures/anatomy & histology , Animal Structures/growth & development , Animals , Body Size , Copepoda/anatomy & histology , Copepoda/genetics , Copepoda/growth & development , Ecosystem , Female , Male , Mexico , Organ Size , Species Specificity
5.
Proc Biol Sci ; 279(1737): 2386-90, 2012 Jun 22.
Article in English | MEDLINE | ID: mdl-22337697

ABSTRACT

Cuttlefish rapidly change their appearance in order to camouflage on a given background in response to visual parameters, giving us access to their visual perception. Recently, it was shown that isolated edge information is sufficient to elicit a body pattern very similar to that used when a whole object is present. Here, we examined contour completion in cuttlefish by assaying body pattern responses to artificial backgrounds of 'objects' formed from fragmented circles, these same fragments rotated on their axis, and with the fragments scattered over the background, as well as positive (full circles) and negative (homogenous background) controls. The animals displayed similar responses to the full and fragmented circles, but used a different body pattern in response to the rotated and scattered fragments. This suggests that they completed the broken circles and recognized them as whole objects, whereas rotated and scattered fragments were instead interpreted as small, individual objects in their own right. We discuss our findings in the context of achieving accurate camouflage in the benthic shallow-water environment.


Subject(s)
Adaptation, Biological/physiology , Color , Form Perception/physiology , Pattern Recognition, Visual/physiology , Sepia/physiology , Vision, Ocular/physiology , Analysis of Variance , Animals , France , Photic Stimulation
6.
Curr Biol ; 21(22): 1937-41, 2011 Nov 22.
Article in English | MEDLINE | ID: mdl-22079113

ABSTRACT

Animals in the lower mesopelagic zone (600-1,000 m depth) of the oceans have converged on two major strategies for camouflage: transparency and red or black pigmentation [1]. Transparency conveys excellent camouflage under ambient light conditions, greatly reducing the conspicuousness of the animal's silhouette [1, 2]. Transparent tissues are seldom perfectly so, resulting in unavoidable internal light scattering [2]. Under directed light, such as that emitted from photophores thought to function as searchlights [3-8], the scattered light returning to a viewer will be brighter than the background, rendering the animal conspicuous [2, 4]. At depths where bioluminescence becomes the dominant source of light, most animals are pigmented red or black, thereby reflecting little light at wavelengths generally associated with photophore emissions and visual sensitivities [3, 9-14]. However, pigmented animals are susceptible to being detected via their silhouettes [5, 9-11]. Here we show evidence for rapid switching between transparency and pigmentation under changing optical conditions in two mesopelagic cephalopods, Japetella heathi and Onychoteuthis banksii. Reflectance measurements of Japetella show that transparent tissue reflects twice as much light as pigmented tissue under direct light. This is consistent with a dynamic strategy to optimize camouflage under ambient and searchlight conditions.


Subject(s)
Decapodiformes/physiology , Octopodiformes/physiology , Animals , Behavior, Animal , Marine Biology , Pacific Ocean , Pigmentation , Visual Perception
7.
J Vis ; 9(13): 13.1-10, 2009 Dec 14.
Article in English | MEDLINE | ID: mdl-20055546

ABSTRACT

Cephalopod mollusks including octopus and cuttlefish are adept at adaptive camouflage, varying their appearance to suit the surroundings. This behavior allows unique access into the vision of a non-human species because one can ask how these animals use spatial information to control their coloration pattern. There is particular interest in factors that affect the relative levels of expression of the Mottle and the Disruptive body patterns. Broadly speaking, the Mottle is displayed on continuous patterned surfaces whereas the Disruptive is used on discrete objects such as pebbles. Recent evidence from common cuttlefish, Sepia officinalis, suggests that multiple cues are relevant, including spatial scale, contrast, and depth. We analyze the body pattern responses of juvenile cuttlefish to a range of checkerboard stimuli. Our results suggest that the choice of camouflage pattern is consistent with a simple model of how cuttlefish classify visual textures, according to whether they are Uniform or patterned, and whether the pattern includes visual edges. In particular, cuttlefish appear to detect edges by sensing the relative spatial phases of two spatial frequency components (e.g., fundamental and the third harmonic Fourier component in a square wave). We discuss the relevance of these findings to vision and camouflage in aquatic environments.


Subject(s)
Decapodiformes/physiology , Depth Perception/physiology , Form Perception/physiology , Pattern Recognition, Visual/physiology , Animals , Photic Stimulation
SELECTION OF CITATIONS
SEARCH DETAIL
...