Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurochem ; 128(6): 829-40, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24117434

ABSTRACT

Müller cells constitute the main glial cell type in the retina where it interacts with virtually all cells displaying relevant functions to retinal physiology. Under appropriate stimuli, Müller cells may undergo dedifferentiation, being able to generate other neural cell types. Here, we show that purified mouse Müller cells in culture express a group of proteins related to the dopaminergic phenotype, including the nuclear receptor-related 1 protein, required for dopaminergic differentiation, as well the enzyme tyrosine hydroxylase. These dopaminergic components are active, since Müller cells are able to synthesize and release dopamine to the extracellular medium. Moreover, Müller-derived tyrosine hydroxylase can be regulated, increasing its activity because of phosphorylation of serine residues in response to agents that increase intracellular cAMP levels. These observations were extended to glial cells obtained from adult monkey retinas with essentially the same results. To address the potential use of dopaminergic Müller cells as a source of dopamine in cell therapy procedures, we used a mouse model of Parkinson's disease, in which mouse Müller cells with the dopaminergic phenotype were transplanted into the striatum of hemi-parkinsonian mice generated by unilateral injection of 6-hydroxydopamine. These cells fully decreased the apomorphine-induced rotational behavior and restored motor functions in these animals, as measured by the rotarod and the forelimb-use asymmetry (cylinder) tests. The data indicate local restoration of dopaminergic signaling in hemi-parkinsonian mice confirmed by measurement of striatal dopamine after Müller cell grafting.


Subject(s)
Dopaminergic Neurons/transplantation , Ependymoglial Cells/transplantation , Parkinsonian Disorders/pathology , Parkinsonian Disorders/therapy , Animals , Cebus , Cell Differentiation/physiology , Cells, Cultured , Corpus Striatum/cytology , Corpus Striatum/physiology , Disease Models, Animal , Dopamine/metabolism , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Ependymoglial Cells/cytology , Ependymoglial Cells/metabolism , Female , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/physiology , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Parkinsonian Disorders/metabolism , Phosphorylation/drug effects , Phosphorylation/physiology , Recovery of Function/physiology , Tyrosine 3-Monooxygenase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...