Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health A ; 86(14): 479-490, 2023 07 18.
Article in English | MEDLINE | ID: mdl-37246633

ABSTRACT

The development of new drugs through studies of candidate molecules is a complex undertaking; however, computational or in silico approaches aimed at optimizing molecules with greater development potential are being utilized for predictions of pharmacokinetic properties such as absorption, distribution, metabolism and excretion (ADME) as well as toxicological parameters. The objective of this study was to examine in silico and in vivo pharmacokinetic and toxicological properties of the chemical constituents present in the essential oil of Croton heliotropiifolius Kunth leaves. The following Pubchem platform as well as Software SwissADME and PreADMET software were employed for in silico studies while micronucleus (MN) testing for in vivo determination of mutagenicity, using Swiss adult male Mus musculus mice. In silico findings demonstrated that all chemical constituents presented (1) high oral absorption (2) medium cellular permeability and (3) high blood brain permeability. As for toxicity, these chemical constituents exhibited low to medium risk of occurrence of cytotoxicity. Regarding in vivo evaluation, peripheral blood samples obtained from animals tested with the oil showed no significant differences in number of MN compared to negative controls. Data indicate that further investigations are necessary to corroborate the findings of this study. Our data suggest that essential oil extracted from Croton heliotropiifolius Kunth leaves may serve as a candidate for new drug development.


Subject(s)
Croton , Oils, Volatile , Male , Animals , Mice , Oils, Volatile/toxicity , Croton/chemistry , Brain , Plant Leaves/toxicity , Plant Leaves/chemistry
2.
J Toxicol Environ Health A ; 85(24): 1002-1018, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36415179

ABSTRACT

Croton heliotropiifolius Kunth, popularly known as "quince" and "velame," contains a high concentration of volatile oils in the leaves, and widely used in folk medicine as an antiseptic, analgesic, sedative, anti-inflammatory, spasmolytic and local anesthetic. The objectives of this investigation were to (1) identify the phytochemical compounds and (2) assess the cytogenotoxicity of the essential oil extracted from the leaves of C. heliotropiifolius Kunth. The oil was extracted utilizing hydrodistillation and phytochemical profile determined using gas chromatography and mass spectrometry (GCMS). In the toxicogenetics analysis, Allium cepa roots were exposed to 1% dimethylsulfoxide or methylmethanesulfonate (MMS, 10 µg/ml) negative and positive controls, respectively, and to C. heliotropiifolius oil at 6 concentrations (0.32; 1.6; 8; 40; 200 or 1000 µg/ml). The phytochemical profile exhibited 40 chromatographic bands, and 33 compounds identified. α-pinene (16.7%) and 1,8-cineole (13.81%) were identified as the major compounds. Some of these identified secondary metabolites displayed biological and pharmacological activities previously reported including antiseptic, analgesic, sedative, anti-inflammatory as well insecticidal, antiviral, anti-fungal actions. In the A. cepa test, C. heliotropiifolius leaves oil induced cytotoxicity at concentrations of 0.32, 1.6 or 200 µg/ml and genotoxicity at 200 or 1000 µg/ml as evidenced by increased presence of micronuclei and significant chromosomal losses. Based upon our observations data demonstrated that the essential oil of C. heliotropiifolius leaves contain monoterpene hydrocarbons, and oxygenated monoterpenes, sesquiterpenes, and oxygenated sesquiterpenes which are associated with cytotoxic and genotoxic responses noted in on A. cepa cells.


Subject(s)
Anti-Infective Agents, Local , Croton , Oils, Volatile , Oils, Volatile/toxicity , Plant Leaves , Monoterpenes , Hypnotics and Sedatives
3.
Lasers Med Sci ; 33(7): 1493-1504, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29728942

ABSTRACT

Biocompatible membranes are widely used in medicine to stimulate bone repair. Several studies have demonstrated that laser photobiomodulation (PBM) also stimulates osteoblast proliferation and osteogenesis at the fracture site, leading to a greater deposition of bone mass and accelerating the process of bone consolidation. This work assessed the therapeutic effect of 780-nm laser PBM and a polystyrene membrane coated with norbixin and collagen (PSNC) on bone healing in rats with calvarial bone defect. Histological staining, Raman spectroscopy, and scanning electron microscopy (SEM) were used to evaluate the bone repair process. Four experimental treatment groups were compared: C, control; M, membrane only; L, laser PBM only; and ML, membrane + laser PBM. A bone defect was created in the calvaria of each animal, with each group subdivided into two subgroups that underwent euthanasia after 15 and 30 days treatment. The L and ML groups were irradiated (λ = 780 nm, ED = 6 J/cm2, P = 60 mW, t = 4 s) postoperatively on alternate days until they were euthanized. The bone concentration of hydroxyapatite (CHA) showed a clear gradation with increasing phosphate area in the order B (normal cortical bone) > L > M > ML > C for both periods. The PSNC membrane was effective in reducing the inflammatory process and served as a scaffold for bone repair. The laser PBM also showed positive effects on the bone repair process with increased deposition and organization of the newly formed bone. However, laser PBM failed to improve the bioactive properties of the membrane scaffold.


Subject(s)
Bone and Bones/pathology , Bone and Bones/radiation effects , Carotenoids/pharmacology , Low-Level Light Therapy/methods , Polystyrenes/chemistry , Wound Healing/drug effects , Wound Healing/radiation effects , Animals , Bone and Bones/drug effects , Collagen/pharmacology , Durapatite , Male , Microscopy, Electron, Scanning , Rats, Wistar , Skull/drug effects , Skull/pathology , Skull/radiation effects , Spectrum Analysis, Raman
SELECTION OF CITATIONS
SEARCH DETAIL
...