Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 15(10): e0009899, 2021 10.
Article in English | MEDLINE | ID: mdl-34705820

ABSTRACT

Poly(A) Binding Proteins (PABPs) are major eukaryotic RNA-binding proteins (RBPs) with multiple roles associated with mRNA stability and translation and characterized mainly from multicellular organisms and yeasts. A variable number of PABP homologues are seen in different organisms however the biological reasons for multiple PABPs are generally not well understood. In the unicellular Leishmania, dependent on post-transcriptional mechanisms for the control of its gene expression, three distinct PABPs are found, with yet undefined functional distinctions. Here, using RNA-immunoprecipitation sequencing analysis we show that the Leishmania PABP1 preferentially associates with mRNAs encoding ribosomal proteins, while PABP2 and PABP3 bind to an overlapping set of mRNAs distinct to those enriched in PABP1. Immunoprecipitation studies combined to mass-spectrometry analysis identified RBPs differentially associated with PABP1 or PABP2, including RBP23 and DRBD2, respectively, that were investigated further. Both RBP23 and DRBD2 bind directly to the three PABPs in vitro, but reciprocal experiments confirmed preferential co-immunoprecipitation of PABP1, as well as the EIF4E4/EIF4G3 based translation initiation complex, with RBP23. Other RBP23 binding partners also imply a direct role in translation. DRBD2, in contrast, co-immunoprecipitated with PABP2, PABP3 and with RBPs unrelated to translation. Over 90% of the RBP23-bound mRNAs code for ribosomal proteins, mainly absent from the transcripts co-precipitated with DRBD2. These experiments suggest a novel and specific route for translation of the ribosomal protein mRNAs, mediated by RBP23, PABP1 and the associated EIF4E4/EIF4G3 complex. They also highlight the unique roles that different PABP homologues may have in eukaryotic cells associated with mRNA translation.


Subject(s)
Leishmania/metabolism , Poly(A)-Binding Proteins/metabolism , Protozoan Proteins/metabolism , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Ribosomal Proteins/metabolism , Leishmania/genetics , Poly(A)-Binding Proteins/genetics , Protein Binding , Protein Biosynthesis , Protozoan Proteins/genetics , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Ribosomal Proteins/genetics
2.
RNA Biol ; 15(6): 739-755, 2018.
Article in English | MEDLINE | ID: mdl-29569995

ABSTRACT

The Poly-A Binding Protein (PABP) is a conserved eukaryotic polypeptide involved in many aspects of mRNA metabolism. During translation initiation, PABP interacts with the translation initiation complex eIF4F and enhances the translation of polyadenylated mRNAs. Schematically, most PABPs can be divided into an N-terminal RNA-binding region, a non-conserved linker segment and the C-terminal MLLE domain. In pathogenic Leishmania protozoans, three PABP homologues have been identified, with the first one (PABP1) targeted by phosphorylation and shown to co-immunoprecipitate with an eIF4F-like complex (EIF4E4/EIF4G3) implicated in translation initiation. Here, PABP1 phosphorylation was shown to be linked to logarithmic cell growth, reminiscent of EIF4E4 phosphorylation, and coincides with polysomal association. Phosphorylation targets multiple serine-proline (SP) or threonine-proline (TP) residues within the PABP1 linker region. This is an essential protein, but phosphorylation is not needed for its association with polysomes or cell viability. Mutations which do impair PABP1 polysomal association and are required for viability do not prevent phosphorylation, although further mutations lead to a presumed inactive protein largely lacking phosphorylated isoforms. Co-immunoprecipitation experiments were carried out to investigate PABP1 function further, identifying several novel protein partners and the EIF4E4/EIF4G3 complex, but no other eIF4F-like complex or subunit. A novel, direct interaction between PABP1 and EIF4E4 was also investigated and found to be mediated by the PABP1 MLLE binding to PABP Interacting Motifs (PAM2) within the EIF4E4 N-terminus. The results shown here are consistent with phosphorylation of PABP1 being part of a novel pathway controlling its function and possibly translation in Leishmania.


Subject(s)
Leishmania infantum/metabolism , Peptide Chain Initiation, Translational/physiology , Poly(A)-Binding Proteins/metabolism , Protozoan Proteins/metabolism , Amino Acid Motifs , Leishmania infantum/genetics , Phosphorylation/physiology , Poly(A)-Binding Proteins/genetics , Protozoan Proteins/genetics
3.
RNA Biol ; 12(11): 1209-21, 2015.
Article in English | MEDLINE | ID: mdl-26338184

ABSTRACT

The eukaryotic initiation factor 4E (eIF4E) recognizes the mRNA cap structure and, together with eIF4G and eIF4A, form the eIF4F complex that regulates translation initiation in eukaryotes. In trypanosomatids, 2 eIF4E homologues (EIF4E3 and EIF4E4) have been shown to be part of eIF4F-like complexes with presumed roles in translation initiation. Both proteins possess unique N-terminal extensions, which can be targeted for phosphorylation. Here, we provide novel insights on the Leishmania infantum EIF4E4 function and regulation. We show that EIF4E4 is constitutively expressed throughout the parasite development but is preferentially phosphorylated in exponentially grown promastigote and amastigote life stages, hence correlating with high levels of translation. Phosphorylation targets multiple serine-proline or threonine-proline residues within the N-terminal extension of EIF4E4 but does not require binding to the EIF4E4's partner, EIF4G3, or to the cap structure. We also report that EIF4E4 interacts with PABP1 through 3 conserved boxes at the EIF4E4 N-terminus and that this interaction is a prerequisite for efficient EIF4E4 phosphorylation. EIF4E4 is essential for Leishmania growth and an EIF4E4 null mutant was only obtained in the presence of an ectopically provided wild type gene. Complementation for the loss of EIF4E4 with several EIF4E4 mutant proteins affecting either phosphorylation or binding to mRNA or to EIF4E4 protein partners revealed that, in contrast to other eukaryotes, only the EIF4E4-PABP1 interaction but neither the binding to EIF4G3 nor phosphorylation is essential for translation. These studies also demonstrated that the lack of both EIF4E4 phosphorylation and EIF4G3 binding leads to a non-functional protein. Altogether, these findings further highlight the unique features of the translation initiation process in trypanosomatid protozoa.


Subject(s)
Eukaryotic Initiation Factor-4E/metabolism , Leishmania/genetics , Leishmania/metabolism , Peptide Chain Initiation, Translational , Protein Interaction Domains and Motifs , Amino Acid Motifs , Amino Acid Sequence , Conserved Sequence , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4G/metabolism , Gene Expression , Gene Knockout Techniques , Leishmania/growth & development , Life Cycle Stages , Molecular Sequence Data , Phosphorylation , Poly(A)-Binding Proteins/chemistry , Poly(A)-Binding Proteins/metabolism , Protein Binding , Sequence Alignment
4.
RNA Biol ; 12(3): 305-19, 2015.
Article in English | MEDLINE | ID: mdl-25826663

ABSTRACT

In higher eukaryotes, eIF4A, eIF4E and eIF4G homologues interact to enable mRNA recruitment to the ribosome. eIF4G acts as a scaffold for these interactions and also interacts with other proteins of the translational machinery. Trypanosomatid protozoa have multiple homologues of eIF4E and eIF4G and the precise function of each remains unclear. Here, 2 previously described eIF4G homologues, EIF4G3 and EIF4G4, were further investigated. In vitro, both homologues bound EIF4AI, but with different interaction properties. Binding to distinct eIF4Es was also confirmed; EIF4G3 bound EIF4E4 while EIF4G4 bound EIF4E3, both these interactions required similar binding motifs. EIF4G3, but not EIF4G4, interacted with PABP1, a poly-A binding protein homolog. Work in vivo with Trypanosoma brucei showed that both EIF4G3 and EIF4G4 are cytoplasmic and essential for viability. Depletion of EIF4G3 caused a rapid reduction in total translation while EIF4G4 depletion led to changes in morphology but no substantial inhibition of translation. Site-directed mutagenesis was used to disrupt interactions of the eIF4Gs with either eIF4E or eIF4A, causing different levels of growth inhibition. Overall the results show that only EIF4G3, with its cap binding partner EIF4E4, plays a major role in translational initiation.


Subject(s)
Eukaryotic Initiation Factor-4A/genetics , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4G/genetics , Leishmania major/genetics , Peptide Chain Initiation, Translational , Protozoan Proteins/genetics , Trypanosoma brucei brucei/genetics , Amino Acid Sequence , Binding Sites , Eukaryotic Initiation Factor-4A/chemistry , Eukaryotic Initiation Factor-4A/metabolism , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4G/chemistry , Eukaryotic Initiation Factor-4G/metabolism , Gene Expression Regulation , Leishmania major/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Poly(A)-Binding Protein I/genetics , Poly(A)-Binding Protein I/metabolism , Protein Binding , Protozoan Proteins/chemistry , Protozoan Proteins/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Trypanosoma brucei brucei/metabolism
5.
BMC Genomics ; 15: 1175, 2014 Dec 23.
Article in English | MEDLINE | ID: mdl-25539953

ABSTRACT

BACKGROUND: The initiation of translation in eukaryotes is supported by the action of several eukaryotic Initiation Factors (eIFs). The largest of these is eIF3, comprising of up to thirteen polypeptides (eIF3a through eIF3m), involved in multiple stages of the initiation process. eIF3 has been better characterized from model organisms, but is poorly known from more diverged groups, including unicellular lineages represented by known human pathogens. These include the trypanosomatids (Trypanosoma and Leishmania) and other protists belonging to the taxonomic supergroup Excavata (Trichomonas and Giardia sp.). RESULTS: An in depth bioinformatic search was carried out to recover the full content of eIF3 subunits from the available genomes of L. major, T. brucei, T. vaginalis and G. duodenalis. The protein sequences recovered were then submitted to homology analysis and alignments comparing them with orthologues from representative eukaryotes. Eleven putative eIF3 subunits were found from both trypanosomatids whilst only five and four subunits were identified from T. vaginalis and G. duodenalis, respectively. Only three subunits were found in all eukaryotes investigated, eIF3b, eIF3c and eIF3i. The single subunit found to have a related Archaean homologue was eIF3i, the most conserved of the eIF3 subunits. The sequence alignments revealed several strongly conserved residues/region within various eIF3 subunits of possible functional relevance. Subsequent biochemical characterization of the Leishmania eIF3 complex validated the bioinformatic search and yielded a twelfth eIF3 subunit in trypanosomatids, eIF3f (the single unidentified subunit in trypanosomatids was then eIF3m). The biochemical data indicates a lack of association of the eIF3j subunit to the complex whilst highlighting the strong interaction between eIF3 and eIF1. CONCLUSIONS: The presence of most eIF3 subunits in trypanosomatids is consistent with an early evolution of a fully functional complex. Simplified versions in other excavates might indicate a primordial complex or secondary loss of selected subunits, as seen for some fungal lineages. The conservation in eIF3i sequence might indicate critical functions within eIF3 which have been overlooked. The identification of eIF3 subunits from distantly related eukaryotes provides then a basis for the study of conserved/divergent aspects of eIF3 function, leading to a better understanding of eukaryotic translation initiation.


Subject(s)
Eukaryotic Initiation Factor-3/chemistry , Eukaryotic Initiation Factor-3/genetics , Trichomonadida/genetics , Trypanosoma/genetics , Amino Acid Sequence , Animals , Computational Biology , Conserved Sequence , Evolution, Molecular , Genetic Variation , Genome, Protozoan , Humans , Molecular Sequence Data , Phylogeny , Protein Subunits/chemistry , Protein Subunits/genetics , Sequence Alignment
6.
Eur J Nutr ; 52(5): 1475-82, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23052626

ABSTRACT

AIM: To investigate the effects of a neonatal low-protein diet on the number of macrophages in culture and the expression/production of proteins that regulate macrophage fusion in young and adult rats. METHODS: Male Wistar rats (n = 18) were suckled by mothers fed diets containing 17 % protein (controls, C) or 8 % protein (undernourished, UN). All rats were fed a normal protein diet after weaning. Bronchoalveolar lavage was collected from 42-, 60- and 90-day-old rats. Alveolar macrophages were cultured for 4 days to assess the number of cells and the expression of cadherins, key proteins involved in macrophage fusion, by western blotting. IL-4 and IFN-γ levels in culture supernatants were measured by ELISA. RESULTS: Offspring from mothers fed a low-protein diet showed a lower body weight gain. The number of cells in cultured macrophages from UN was reduced at 42 and 60 days and increased at 90 days. IL-4 production was increased in the supernatants from UN group at 60 days but did not affect the expression of cadherins. IFN-γ production was increased in the supernatants from UN group at 42 and 60 days and reduced at 90 days. CONCLUSIONS: This study thus demonstrated that dietary restriction during lactation altered the number of alveolar macrophages in culture and the production of fusion proteins of offspring aged 42, 60 or 90 days but did not modify the expression of adhesion molecules important for the fusion of these cells.


Subject(s)
Animal Nutritional Physiological Phenomena , Cell Fusion , Diet, Protein-Restricted , Macrophages/metabolism , Animals , Bronchoalveolar Lavage Fluid/cytology , Cadherins/metabolism , Cells, Cultured , Female , Interferon-gamma/metabolism , Interleukin-4/metabolism , Lactation , Macrophages/cytology , Male , Malnutrition/metabolism , Rats , Rats, Wistar , Weaning , Weight Gain
7.
Mol Biochem Parasitol ; 176(1): 25-36, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21111007

ABSTRACT

Translation initiation in eukaryotes requires eIF4E, the cap binding protein, which mediates its function through an interaction with the scaffolding protein eIF4G, as part of the eIF4F complex. In trypanosomatids, four eIF4E homologues have been described but the specific function of each is not well characterized. Here, we report a study of these proteins in Trypanosoma brucei (TbEIF4E1 through 4). At the sequence level, they can be assigned to two groups: TbEIF4E1 and 2, similar in size to metazoan eIF4E1; and TbEIF4E3 and 4, with long N-terminal extensions. All are constitutively expressed, but whilst TbEIF4E1 and 2 localize to both the nucleus and cytoplasm, TbEIF4E3 and 4 are strictly cytoplasmic and are also more abundant. After knockdown through RNAi, TbEIF4E3 was the only homologue confirmed to be essential for viability of the insect procyclic form. In contrast, TbEIF4E1, 3 and 4 were all essential for the mammalian bloodstream form. Simultaneous RNAi knockdown of TbEIF4E1 and 2 caused cessation of growth and death in procyclics, but with a delayed impact on translation, whilst knockdown of TbEIF4E3 alone or a combined TbEIF4E1 and 4 knockdown led to substantial translation inhibition which preceded cellular death by several days, at least. Only TbEIF4E3 and 4 were found to interact with T. brucei eIF4G homologues; TbEIF4E3 bound both TbEIF4G3 and 4 whilst TbEIF4E4 bound only to TbEIF4G3. These results are consistent with TbEIF4E3 and 4 having distinct but relevant roles in initiation of protein synthesis.


Subject(s)
Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Trypanosoma/genetics , Trypanosoma/metabolism , Amino Acid Sequence , Cell Nucleus/metabolism , Cell Proliferation , Cell Survival , Cytoplasm/metabolism , Eukaryotic Initiation Factor-4E/chemistry , Gene Expression Regulation , Intracellular Space/metabolism , Molecular Sequence Data , Protein Binding , Protein Transport/physiology , RNA Interference , Sequence Alignment
8.
Eukaryot Cell ; 9(10): 1484-94, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20675580

ABSTRACT

Trypanosomatid protozoans are reliant on posttranscriptional processes to control gene expression. Regulation occurs at the levels of mRNA processing, stability, and translation, events that may require the participation of the poly(A) binding protein (PABP). Here, we have undertaken a functional study of the three distinct Leishmania major PABP (LmPABP) homologues: the previously described LmPABP1; LmPABP2, orthologous to the PABP described from Trypanosoma species; and LmPABP3, unique to Leishmania. Sequence identity between the three PABPs is no greater than 40%. In assays measuring binding to A-rich sequences, LmPABP1 binding was poly(A) sensitive but heparin insensitive; LmPABP2 binding was heparin sensitive and less sensitive to poly(A), compatible with unique substitutions observed in residues implicated in poly(A) binding; and LmPABP3 displayed intermediate properties. All three homologues are simultaneously expressed as abundant cytoplasmic proteins in L. major promastigotes, but only LmPABP1 is present as multiple isoforms. Upon transcription inhibition, LmPABP2 and -3 migrated to the nucleus, while LmPABP1 remained predominantly cytoplasmic. Immunoprecipitation assays showed an association between LmPABP2 and -3. Although the three proteins bound to a Leishmania homologue of the translation initiation factor eukaryotic initiation factor 4G (eIF4G) (LmEIF4G3) in vitro, LmPABP1 was the only one to copurify with native LmEIF4G3 from cytoplasmic extracts. Functionality was tested using RNA interference (RNAi) in Trypanosoma brucei, where both orthologues to LmPABP1 and -2 are required for cellular viability. Our results indicate that these homologues have evolved divergent functions, some of which may be unique to the trypanosomatids, and reinforces a role for LmPABP1 in translation through its interaction with the eIF4G homologue.


Subject(s)
Eukaryotic Initiation Factor-4G/metabolism , Leishmania major/metabolism , Poly(A)-Binding Proteins/metabolism , RNA, Messenger/metabolism , Amino Acid Sequence , Animals , Binding Sites , Cell Survival , Leishmania major/genetics , Leishmania major/growth & development , Molecular Sequence Data , Poly A/metabolism , Poly(A)-Binding Proteins/chemistry , Poly(A)-Binding Proteins/genetics , Protein Binding , Protein Biosynthesis , RNA Interference , Sequence Homology, Amino Acid , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...