Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 10638, 2021 05 20.
Article in English | MEDLINE | ID: mdl-34017018

ABSTRACT

This study aimed to evaluate in the papaya Tainung genotype, the effects of partial root-zone drying (PRD) technique on soil water regimes by using different frequencies of shifting irrigation-side of plant row and the effects of PRD technique on (1) crop agronomic performance, (2) titratable fruit acidity (TA), (3) total soluble solids (TSS), and TSS/TA ratio. Also, we analyze the spatial dynamic of papaya condition using normalized difference vegetation index (NDVI) from different satellite images. The study was conducted in the semi-arid region of Bahia (BA) and Minas Gerais (MG), Brazil. The combination of 100% (Full irrigation-FU), 50%, and 35% in the irrigation depth (WID) and frequencies of shifting plant-row side irrigation of 0 (Fixed Irrigation-FX), 7, 14, and 21 days were applied. Nine treatments were studied in BA and five in MG. The water available in the soil was reduced to 44% for frequencies of shifting plant-row side irrigation of 7 days, 50% for 14 days, and 85% for 21 days, compared to the soil water availability at field capacity. Partial water deficit in the soil through the PRD technique did not significantly reduce the total root length, effective root depth, and root effective horizontal distance of the papaya Tainung genotype. However, PRD treatments showed leaf abscission, which resulted in reduced leaf area and NDVI values, especially in the MG experiment. Papaya yield and fruit quality were not affected. However, except for PRD 21 35%, irrigation water depth reduced to 50 and 35% under PRD increased crop water productivity (CWP) in papaya plants. Thus, the PRD technique may save 35% of WID using the alternation of lateral shift irrigation of crop row every 7 days under water scarcity in semi-arid regions. The NDVI index was important to compare the papaya canopy vigor between the experimental areas studied. We also confirmed the potential of NDVI to monitor the vigor of papaya canopy, since we could notice the sensibility of NDVI to identify water stress in papaya in higher vapor pressure deficit (VPD) conditions occurred in October 2016 and January 2017 in Bom Jesus da Lapa-BA. Therefore, the PRD strategy can be a useful tool to save water in papaya cultivation under semi-arid conditions.

2.
PLoS One ; 16(1): e0245270, 2021.
Article in English | MEDLINE | ID: mdl-33428674

ABSTRACT

Alternative models for the estimation of reference evapotranspiration (ETo) are typically assessed using traditional error metrics, such as root mean square error (RMSE), which may not be sufficient to select the best model for irrigation scheduling purposes. Thus, this study analyzes the performance of the original and calibrated Hargreaves-Samani (HS), Romanenko (ROM) and Jensen-Haise (JH) equations, initially assessed using traditional error metrics, for use in irrigation scheduling, considering the simulation of different irrigation intervals/time scales. Irrigation scheduling was simulated using meteorological data collected in Viçosa-MG and Mocambinho-MG, Brazil. The Penman-Monteith FAO-56 equation was used as benchmark. In general, the original equations did not perform well to estimate ETo, except the ROM and HS equations used at Viçosa and Mocambinho, respectively. Calibration and the increase in the time scale provided performance gains. When applied in irrigation scheduling, the calibrated HS and JH equations showed the best performances. Even with greater errors in estimating ETo, the calibrated HS equation performed similarly or better than the calibrated JH equation, as it had errors with greater potential to be canceled during the soil water balance. Finally, in addition to using error metrics, the performance of the models throughout the year should be considered in their assessment. Furthermore, simulating the application of ETo models in irrigation scheduling can provide valuable information for choosing the most suitable model.


Subject(s)
Agricultural Irrigation , Models, Theoretical , Plant Transpiration/physiology , Calibration , Computer Simulation , Meteorological Concepts , Soil/chemistry , Volatilization , Water/chemistry
3.
Sci Rep ; 10(1): 19719, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33184345

ABSTRACT

Droughts are major natural disasters that affect many parts of the world all years and recently affected one of the major conilon coffee-producing regions of the world in state of Espírito Santo, which caused a huge crisis in the sector. Therefore, the objective of this study was to conduct an analysis with technical-scientific basis of the real impact of drought associated with high temperatures and irradiances on the conilon coffee (Coffea canephora Pierre ex Froehner) plantations located in the north, northwest, and northeast regions of the state of Espírito Santo, Brazil. Data from 2010 to 2016 of rainfall, air temperature, production, yield, planted area and surface remote sensing were obtained from different sources, statistically analyzed, and correlated. The 2015/2016 season was the most affected by the drought and high temperatures (mean annual above 26 °C) because, in addition to the adverse weather conditions, coffee plants were already damaged by the climatic conditions of the previous season. The increase in air temperature has higher impact (negative) on production than the decrease in annual precipitation. The average annual air temperatures in the two harvest seasons that stood out for the lowest yields (i.e. 2012/2013 and 2015/2016) were approximately 1 °C higher than in the previous seasons. In addition, in the 2015/2016 season, the average annual air temperature was the highest in the entire series. The spatial and temporal distribution of Enhanced Vegetation Index values enabled the detection and perception of droughts in the conilon coffee-producing regions of Espírito Santo. The rainfall volume accumulated in the periods from September to December and from April to August are the ones that most affect coffee yield. The conilon coffee plantations in these regions are susceptible to new climate extremes, as they continue to be managed under irrigation and full sun. The adoption of agroforestry systems and construction of small reservoirs can be useful to alleviate these climate effects, reducing the risk of coffee production losses and contributing to the sustainability of crops in Espírito Santo.

4.
Sci Rep ; 10(1): 16052, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32994541

ABSTRACT

Although intensively studied, few works had looked into S. pennellii's ability to cope with water-deficit conditions from a breeding point of view. In this study, we assessed potential traits of S. pennellii, that had previously been linked to high yields in other plant species, under long-term water-limited conditions and made a parallel with plant yield. For this purpose, the drought-resistant tomato genotypes IL 3-5 and IL 10-1, and the drought-sensitive IL 2-5 and IL 7-1 at seed level, together with both parents the S. pennellii accession LA 716 and the cultivar M82 were kept at 50 and 100% ASW throughout the growing season. Our findings confirm the superiority of LA 716 under water-limited conditions compared to the other S. lycopersicum genotypes in terms of plant water status maintenance. Percentual reduction on plant yield was higher in IL 3-5 and IL 10-1 than in M82 plants, indicating no correlation between drought resistance on germination and plant productive stages. A strong positive correlation was found between fruit yield and A, gs, and Ψleaf at 50% ASW, suggesting these traits as important selection criteria. LT and gmin, LA 716's most promising traits, did not show a linear correlation with fruit yield under low water regimes. This study unravels traits behind tomato performance under water-limited conditions and should work as guidance for breeders aiming at developing drought-resistant tomato cultivars.


Subject(s)
Plant Breeding/methods , Solanum/anatomy & histology , Solanum/genetics , Droughts , Fruit/genetics , Genotype , Solanum lycopersicum/genetics , Plant Diseases/genetics , Plant Leaves/genetics , Selection, Genetic/genetics , Solanum/growth & development , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...