Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Planta Med ; 83(3-04): 285-291, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27525508

ABSTRACT

Obesity remains a global problem. In search of phytochemicals that have antiobesity potential, this study evaluated α,ß-amyrin, a triterpenoid mixture from Protium heptaphyllum, on high-fat diet-induced obesity in mice. Groups of mice (n = 8) were fed a normal diet or a high-fat diet, and were orally treated or not treated with either α,ß-amyrin (10 or 20 mg/kg) or sibutramine (10 mg/kg) for 15 weeks. Variables measured at termination were body weight, visceral fat accumulation, adipocyte surface area, peroxisome proliferator-activated receptor gamma, and lipoprotein lipase expressions in adipose tissue, the levels of plasma glucose and insulin, the satiety hormones ghrelin and leptin, the digestive enzymes amylase and lipase, and the inflammatory mediators TNF-α, interleukin-6, and MCP-1. Results showed that α,ß-amyrin treatment resulted in lower high-fat diet-induced increases in body weight, visceral fat content, adipocyte surface area, peroxisome proliferator-activated receptor gamma, and lipoprotein lipase expressions, and blood glucose and insulin levels. Additionally, the markedly elevated leptin and decreased ghrelin levels seen in the high-fat diet-fed control mice were significantly modulated by α,ß-amyrin treatment. Furthermore, α,ß-amyrin decreased serum TNF-α and MCP-1. These results suggest that α,ß-amyrin could be beneficial in reducing high-fat diet-induced obesity and associated disorders via modulation of enzymatic, hormonal, and inflammatory responses.


Subject(s)
Anti-Obesity Agents/pharmacology , Obesity/drug therapy , Oleanolic Acid/analogs & derivatives , Abdominal Fat/drug effects , Adipocytes/cytology , Adipocytes/drug effects , Adipose Tissue/drug effects , Adipose Tissue/metabolism , Adipose Tissue, White/drug effects , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Burseraceae/chemistry , Cyclobutanes/pharmacology , Diet, High-Fat , Ghrelin/blood , Insulin/blood , Leptin/blood , Lipids/blood , Lipoprotein Lipase/metabolism , Male , Mice , Obesity/blood , Obesity/etiology , Oleanolic Acid/chemistry , Oleanolic Acid/isolation & purification , Oleanolic Acid/pharmacology , PPAR gamma/metabolism , Phytotherapy , Resistin/blood
2.
Article in English | MEDLINE | ID: mdl-25709707

ABSTRACT

Herbal compounds rich in triterpenes are well known to regulate glucose and lipid metabolism and to have beneficial effects on metabolic disorders. The present study investigated the antiobesity properties of resin from Protium heptaphyllum (RPH) and the possible mechanisms in mice fed a high-fat diet (HFD) for 15 weeks. Mice treated with RPH showed decreases in body weight, net energy intake, abdominal fat accumulation, plasma glucose, amylase, lipase, triglycerides, and total cholesterol relative to their respective controls, which were RPH unfed. Additionally, RPH treatment, while significantly elevating the plasma level of ghrelin hormone, decreased the levels of insulin, leptin, and resistin. Besides, HFD-induced increases in plasma levels of proinflammatory mediators TNF-α, IL-6, and MCP-1 were significantly lowered by RPH. Furthermore, in vitro studies revealed that RPH could significantly inhibit the lipid accumulation in 3T3-L1 adipocytes (measured by Oil-Red O staining) at concentrations up to 50 µg/mL. These findings suggest that the antiobese potential of RPH is largely due to its modulatory effects on various hormonal and enzymatic secretions related to fat and carbohydrate metabolism and to the regulation of obesity-associated inflammation.

3.
Lipids Health Dis ; 11: 98, 2012 Aug 06.
Article in English | MEDLINE | ID: mdl-22867128

ABSTRACT

BACKGROUND: Pentacyclic triterpenes in general exert beneficial effects in metabolic disorders. This study investigated the effects of α, ß-amyrin, a pentacyclic triterpene mixture from the resin of Protium heptaphyllum on blood sugar level and lipid profile in normal and streptozotocin (STZ)-induced diabetic mice, and in mice fed on a high-fat diet (HFD). FINDINGS: Mice treated with α, ß-amyrin (10, 30 and 100 mg/kg, p.o.) or glibenclamide (10 mg/kg, p.o.) had significantly reduced STZ-induced increases in blood glucose (BG), total cholesterol (TC) and serum triglycerides (TGs). Unlike glibenclamide that showed significant reductions in BG, TC and TGs in normoglycemic mice, α, ß-amyrin did not lower normal blood sugar levels but at 100 mg/kg, manifested a hypolipidemic effect. Also, α, ß-amyrin effectively reduced the elevated plasma glucose levels during the oral glucose tolerance test. Moreover, the plasma insulin level and histopathological analysis of pancreas revealed the beneficial effect of α, ß-amyrin in the preservation of beta cell integrity. In mice treated orally with α, ß-amyrin (10, 30 and 100 mg/kg) or fenofibrate (200 mg/kg), the HFD-associated rise in serum TC and TGs were significantly less. The hypocholesterolemic effect of α, ß-amyrin appeared more prominent at 100 mg/kg with significant decreases in VLDL and LDL cholesterol and an elevation of HDL cholesterol. Besides, the atherogenic index was significantly reduced by α, ß-amyrin. CONCLUSIONS: These findings reflect the potential antihyperglycemic and hypolipidemic effects of α, ß-amyrin mixture and suggest that it could be a lead compound for drug development effective in diabetes and atherosclerosis.


Subject(s)
Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/pharmacology , Magnoliopsida/chemistry , Oleanolic Acid/analogs & derivatives , Animals , Blood Glucose/metabolism , Cholesterol/blood , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diet, High-Fat/adverse effects , Drug Discovery , Fenofibrate/pharmacology , Glyburide/pharmacology , Hypercholesterolemia/blood , Hypercholesterolemia/drug therapy , Hypoglycemic Agents/administration & dosage , Hypoglycemic Agents/chemistry , Hypolipidemic Agents/administration & dosage , Hypolipidemic Agents/chemistry , Insulin-Secreting Cells/drug effects , Insulin-Secreting Cells/pathology , Male , Mice , Oleanolic Acid/administration & dosage , Oleanolic Acid/chemistry , Oleanolic Acid/pharmacology , Phytotherapy , Triglycerides/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...