Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Breed Genet ; 141(3): 291-303, 2024 May.
Article in English | MEDLINE | ID: mdl-38062881

ABSTRACT

Feed efficiency plays a major role in the overall profitability and sustainability of the beef cattle industry, as it is directly related to the reduction of the animal demand for input and methane emissions. Traditionally, the average daily feed intake and weight gain are used to calculate feed efficiency traits. However, feed efficiency traits can be analysed longitudinally using random regression models (RRMs), which allow fitting random genetic and environmental effects over time by considering the covariance pattern between the daily records. Therefore, the objectives of this study were to: (1) propose genomic evaluations for dry matter intake (DMI), body weight gain (BWG), residual feed intake (RFI) and residual weight gain (RWG) data collected during an 84-day feedlot test period via RRMs; (2) compare the goodness-of-fit of RRM using Legendre polynomials (LP) and B-spline functions; (3) evaluate the genetic parameters behaviour for feed efficiency traits and their implication for new selection strategies. The datasets were provided by the EMBRAPA-GENEPLUS beef cattle breeding program and included 2920 records for DMI, 2696 records for BWG and 4675 genotyped animals. Genetic parameters and genomic breeding values (GEBVs) were estimated by RRMs under ssGBLUP for Nellore cattle using orthogonal LPs and B-spline. Models were compared based on the deviance information criterion (DIC). The ranking of the average GEBV of each test week and the overall GEBV average were compared by the percentage of individuals in common and the Spearman correlation coefficient (top 1%, 5%, 10% and 100%). The highest goodness-of-fit was obtained with linear B-Spline function considering heterogeneous residual variance. The heritability estimates across the test period for DMI, BWG, RFI and RWG ranged from 0.06 to 0.21, 0.11 to 0.30, 0.03 to 0.26 and 0.07 to 0.27, respectively. DMI and RFI presented within-trait genetic correlations ranging from low to high magnitude across different performance test-day. In contrast, BWG and RWG presented negative genetic correlations between the first 3 weeks and the other days of performance tests. DMI and RFI presented a high-ranking similarity between the GEBV average of week eight and the overall GEBV average, with Spearman correlations and percentages of individuals selected in common ranging from 0.95 to 1.00 and 93 to 100, respectively. Week 11 presented the highest Spearman correlations (ranging from 0.94 to 0.98) and percentages of individuals selected in common (ranging from 85 to 94) of BWG and RWG with the average GEBV of the entire period of the test. In conclusion, the RRM using linear B-splines is a feasible alternative for the genomic evaluation of feed efficiency. Heritability estimates of DMI, RFI, BWG and RWG indicate enough additive genetic variance to achieve a moderate response to selection. A new selection strategy can be adopted by reducing the performance test to 56 days for DMI and RFI selection and 77 days for BWG and RWG selection.


Subject(s)
Genome , Genomics , Humans , Cattle/genetics , Animals , Phenotype , Weight Gain/genetics , Genotype , Eating/genetics , Animal Feed
2.
BMC Genom Data ; 24(1): 76, 2023 12 13.
Article in English | MEDLINE | ID: mdl-38093199

ABSTRACT

BACKGROUND: Non-additive genetic effects are often ignored in livestock genetic evaluations. However, fitting them in the models could improve the accuracy of genomic breeding values. Furthermore, non-additive genetic effects contribute to heterosis, which could be optimized through mating designs. Traits related to fitness and adaptation, such as heat tolerance, tend to be more influenced by non-additive genetic effects. In this context, the primary objectives of this study were to estimate variance components and assess the predictive performance of genomic prediction of breeding values based on alternative models and two independent datasets, including performance records from a purebred pig population and heat tolerance indicators recorded in crossbred lactating sows. RESULTS: Including non-additive genetic effects when modelling performance traits in purebred pigs had no effect on the residual variance estimates for most of the traits, but lower additive genetic variances were observed, especially when additive-by-additive epistasis was included in the models. Furthermore, including non-additive genetic effects did not improve the prediction accuracy of genomic breeding values, but there was animal re-ranking across the models. For the heat tolerance indicators recorded in a crossbred population, most traits had small non-additive genetic variance with large standard error estimates. Nevertheless, panting score and hair density presented substantial additive-by-additive epistatic variance. Panting score had an epistatic variance estimate of 0.1379, which accounted for 82.22% of the total genetic variance. For hair density, the epistatic variance estimates ranged from 0.1745 to 0.1845, which represent 64.95-69.59% of the total genetic variance. CONCLUSIONS: Including non-additive genetic effects in the models did not improve the accuracy of genomic breeding values for performance traits in purebred pigs, but there was substantial re-ranking of selection candidates depending on the model fitted. Except for panting score and hair density, low non-additive genetic variance estimates were observed for heat tolerance indicators in crossbred pigs.


Subject(s)
Lactation , Thermotolerance , Swine/genetics , Animals , Female , Models, Genetic , Genomics , Alleles
3.
Front Genet ; 14: 1118308, 2023.
Article in English | MEDLINE | ID: mdl-37662838

ABSTRACT

Beef cattle affected by feet and legs malformations (FLM) cannot perform their productive and reproductive functions satisfactorily, resulting in significant economic losses. Accelerated weight gain in young animals due to increased fat deposition can lead to ligaments, tendon and joint strain and promote gene expression patterns that lead to changes in the normal architecture of the feet and legs. The possible correlated response in the FLM due to yearling weight (YW) selection suggest that this second trait could be used as an indirect selection criterion. Therefore, FLM breeding values and the genetic correlation between FLM and yearling weight (YW) were estimated for 295,031 Nellore animals by fitting a linear-threshold model in a Bayesian approach. A genome-wide association study was performed to identify genomic windows and positional candidate genes associated with FLM. The effects of single nucleotide polymorphisms (SNPs) on FLM phenotypes (affected or unaffected) were estimated using the weighted single-step genomic BLUP method, based on genotypes of 12,537 animals for 461,057 SNPs. Twelve non-overlapping windows of 20 adjacent SNPs explaining more than 1% of the additive genetic variance were selected for candidate gene annotation. Functional and gene prioritization analysis of candidate genes identified six genes (ATG7, EXT1, ITGA1, PPARD, SCUBE3, and SHOX) that may play a role in FLM expression due to their known role in skeletal muscle development, aberrant bone growth, lipid metabolism, intramuscular fat deposition and skeletogenesis. Identifying genes linked to foot and leg malformations enables selective breeding for healthier herds by reducing the occurrence of these conditions. Genetic markers can be used to develop tests that identify carriers of these mutations, assisting breeders in making informed breeding decisions to minimize the incidence of malformations in future generations, resulting in greater productivity and animal welfare.

4.
Int J Biometeorol ; 67(7): 1273-1277, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37191730

ABSTRACT

Heat stress negatively affects livestock, with undesirable effects on animals' production and reproduction. Temperature and humidity index (THI) is a climatic variable used worldwide to study the effect of heat stress on farm animals. Temperature and humidity data can be obtained in Brazil through the National Institute of Meteorology (INMET), but complete data may not be available due to temporary failures on weather stations. An alternative to obtaining meteorological data is the National Aeronautics and Space Administration Prediction of Worldwide Energy Resources (NASA POWER) satellite-based weather system. We aimed to compare THI estimates obtained from INMET weather stations and NASA POWER meteorological information sources using Pearson correlation and linear regression. After quality check, data from 489 INMET weather stations were used. The hourly, average daily and maximum daily THI were evaluated. We found greater correlations and better regression evaluation metrics when average daily THI values were considered, followed by maximum daily THI, and hourly THI. NASA POWER satellite-based weather system is a suitable tool for obtaining the average and maximum THI values using information collected from Brazil, showing high correlations with THI estimates from INMET and good regression evaluation metrics, and can assist studies that aim to analyze the impact of heat stress on livestock production in Brazil, providing additional data to complement the existing information available in the INMET database.


Subject(s)
Heat Stress Disorders , Meteorology , Animals , United States , Female , Humidity , Temperature , Brazil , United States National Aeronautics and Space Administration , Weather , Heat Stress Disorders/veterinary , Hot Temperature , Lactation , Milk
5.
J Anim Breed Genet ; 140(2): 185-197, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36321505

ABSTRACT

Characterized by the incomplete development of the germinal epithelium of the seminiferous tubules, Testicular hypoplasia (TH) leads to decreased sperm concentration, increased morphological changes in sperm and azoospermia. Economic losses resulting from the disposal of affected bulls reduce the efficiency of meat production systems. A genome-wide association study and functional analysis were performed to identify genomic windows and the underlying positional candidate genes associated with TH in Nellore cattle. Phenotypic and pedigree data from 207,195 animals and genotypes (461,057 single nucleotide polymorphism, SNP) from 17,326 sires were used in this study. TH was evaluated as a binary trait measured at 18 months of age. A possible correlated response on TH resulting from the selection for scrotal circumference was evaluated by using a two-trait analysis. Thus, estimated breeding values were calculated by fitting a linear-threshold animal model in a Bayesian approach. The SNP effects were estimated using the weighted single-step genomic BLUP method. Twelve non-overlapping windows of 20 adjacent SNP that explained more than 1% of the additive genetic variance were selected for candidate gene annotation. Functional and gene prioritization analysis of the candidate genes identified genes (KHDRBS3, GPX5, STAR, ERLIN2), which might play an important role in the expression of TH due to their known roles in the spermatogenesis process, synthesis of steroids and lipid metabolism.


Subject(s)
Genome-Wide Association Study , Semen , Cattle/genetics , Male , Animals , Genome-Wide Association Study/veterinary , Bayes Theorem , Semen/physiology , Spermatozoa , Genotype , Phenotype , Polymorphism, Single Nucleotide
6.
Trop Anim Health Prod ; 55(1): 14, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36538196

ABSTRACT

This study is aimed at estimating genetic parameters, effective population size, inbreeding, and inbreeding depression for birth weight, weaning weight, and average pre-weaning daily weight gain (ADG) in Piau pigs. We used information from 3841 Piau pigs, and four linear models were fitted in single-trait analyses, including or excluding maternal genetic effect, common litter effect, or a combination. The adjustments of the models were compared using the likelihood ratio test, in which the model that presented the best fit for each trait was used to estimate the (co)variance components. The inbreeding depression effect was evaluated using a linear model that included the fixed effects of sex, parity order, contemporary group, and inbreeding coefficient as a fixed covariate. The weights at birth and weaning showed low direct heritabilities (0.08 and 0.05, respectively), while the ADG showed moderate heritability (0.20). The weight at birth showed high genetic correlations with the weight at weaning (0.90) and the ADG (0.82). The weight at weaning and the ADG also showed a high genetic correlation (0.99). There was an inbreeding increase over the generations and a reduction in the effective population size. In the last generation evaluated, all the animals were inbred, the average inbreeding coefficient was 0.07, and the effective population size was 20.8. A significant inbreeding effect on ADG was observed, where an increase of 1% in the inbreeding coefficient resulted in a decrease of 0.005 g in the ADG. Thus, increasing effective population size is mandatory for controlling inbreeding and reducing the loss of variability in this Piau pig population.


Subject(s)
Inbreeding Depression , Pregnancy , Female , Swine/genetics , Animals , Inbreeding , Parturition , Birth Weight/genetics , Parity , Weaning , Weight Gain/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...