Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemosphere ; 266: 129019, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33272678

ABSTRACT

The emission of mercury (Hg) by chlor-alkali plants can pollute soils and sediments, posing risks to the environment and human health. Mangrove ecosystems are particularly sensitive to Hg contamination. Here, we studied the Hg spatial distribution and associated human and ecologic risks in mangrove soils impacted by a chlor-alkali plant. Sixty-six samples of superficial soils were collected from the mangrove of the Botafogo River, Brazil. Mercury contents were determined and ecological and human health risks were estimated from the soil. The Hg contents exceeded the local Hg background by up to 180 times, indicating the substantial anthropic contribution that occurred in the area. Mercury concentrations followed a gradient as a function of the distance from the chlor-alkali plant, with an apparent contribution from the estuary's hydrodynamic regime. The ecological risk was considered high in all the soils evaluated, while the daily average exposure for humans, considering multiple exposure routes to soil, is below the tolerable dose recommended by the World Health Organization (WHO). However, the risk to human health was unacceptable in the estuary section closest to the plant, mainly for children. Vapor inhalation was the main route for estimating non-carcinogenic risk. The results of this study indicate a severe scenario of Hg pollution with unacceptable risks to the ecosystem and the health of human beings, especially of the communities that live from fishery and shellfish colletion and are exposed daily to soils polluted by mercury. Studies on the organomercurial species in the food chain and Hg levels in individuals living close to the estuary are warranted. This research is an important reference in the world regarding the contamination of mangrove areas by Hg.


Subject(s)
Mercury , Soil Pollutants , Brazil , Child , Ecosystem , Environmental Monitoring , Humans , Mercury/analysis , Risk Assessment , Soil , Soil Pollutants/analysis
2.
Environ Monit Assess ; 190(10): 606, 2018 Sep 24.
Article in English | MEDLINE | ID: mdl-30250983

ABSTRACT

The soils of the Brazilian Amazon exhibit large geochemical diversity reflecting the different soil formation processes in an area covering 49% of the Brazilian territory. Soil contamination by heavy metals is one of the threats to the sustainability of this Biome but establishing quality reference values (QRVs) for the region is a challenging owing to the immense territorial area of the Amazon. This study aimed to determine the natural background of heavy metals in soils from the southwestern Brazilian Amazon in order to propose QRVs for Ba, Cd, Cr, Cu, Fe, Mn, Ni, Pb, Sb, and Zn for alluvial sedimentary soils. One hundred and twenty-eight soil samples were collected at a depth of 0.0-0.2 m in sites with minimal anthropogenic interference. Soil sample digestion was based on the EPA 3051A method and metal concentrations were determined by ICP-OES. QRVs calculated for the southwestern Brazilian Amazon are among the lowest recorded in Brazil (mg kg-1): Ba (16.5), Cd (0.1), Cr (6.9), Cu (2.8), Fe (15.4), Mn (13.4), Ni (1.7), Pb (4.4), Sb (0.9), and Zn (5.7). The low metal concentration is likely a result of the sedimentary origin of the soils. The results of this study can serve as a basis for defining public policies to investigate the environmental impacts resulting from changes in land use in areas of the Brazilian Amazon.


Subject(s)
Environmental Monitoring/methods , Environmental Pollution/analysis , Metals, Heavy/analysis , Soil Pollutants/analysis , Soil/chemistry , Brazil , Rainforest , Reference Values
SELECTION OF CITATIONS
SEARCH DETAIL
...