Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 106(5): 3192-3202, 2023 May.
Article in English | MEDLINE | ID: mdl-36907755

ABSTRACT

Exogenous enzymes are added to diets to improve nutrient utilization and feed efficiency. A study was conducted to evaluate the effects of dietary exogenous enzyme products with amylolytic (Amaize, Alltech) and proteolytic (Vegpro, Alltech) activity on performance, excretion of purine derivatives, and ruminal fermentation of dairy cows. A total of 24 Holstein cows, 4 of which were ruminally cannulated (161 ± 88 d in milk, 681 ± 96 body weight, and 35.2 ± 5.2 kg/d of milk yield), were blocked by milk yield, days in milk, and body weight, and then distributed in a replicated 4 × 4 Latin square design. Experimental periods lasted 21 d, of which the first 14 d were allowed for treatment adaptation and the last 7 d were used for data collection. Treatments were as follows: (1) control (CON) with no feed additives, (2) amylolytic enzyme product added at 0.5 g/kg diet dry matter (DM; AML), (3) amylolytic enzyme product at 0.5 g/kg of diet DM and proteolytic enzyme product at 0.2 g/kg of diet DM (low level; APL), and (4) amylolytic enzyme products added at 0.5 g/kg diet DM and proteolytic enzyme product at 0.4 g/kg of diet DM (high level; APH). Data were analyzed using the mixed procedure of SAS (version 9.4; SAS Institute Inc.). Differences between treatments were analyzed by orthogonal contrasts: CON versus all enzyme groups (ENZ); AML versus APL+APH; and APL versus APH. Dry matter intake was not affected by treatments. Sorting index for feed particles with size <4 mm was lower for ENZ group than for CON. Total-tract apparent digestibility of DM and nutrients (organic matter, starch, neutral detergent fiber, crude protein, and ether extract) were similar between CON and ENZ. Starch digestibility was greater in cows fed APL and APH treatments (86.3%) compared with those in the AML group (83.6%). Neutral detergent fiber digestibility was greater in APH cows compared with those in the APL group (58.1 and 55.2%, respectively). Ruminal pH and NH3-N concentration were not affected by treatments. Molar percentage of propionate tended to be greater in cows fed ENZ treatments than in those fed CON. Molar percentage of propionate was greater in cows fed AML than those fed the blends of amylase and protease (19.2 and 18.5%, respectively). Purine derivative excretions in urine and milk were similar in cows fed ENZ and CON. Uric acid excretion tended to be greater in cows consuming APL and APH than in those in the AML group. Serum urea N concentration tended to be greater in cows fed ENZ than in those fed CON. Milk yield was greater in cows fed ENZ treatments compared with CON (32.0, 33.1, 33.1, and 33.3 kg/d for CON, AML, APL, and APH, respectively). Fat-corrected milk and lactose yields were higher when feeding ENZ. Feed efficiency tended to be greater in cows fed ENZ than in those fed CON. Feeding ENZ benefited cows' performance, whereas the effects on nutrient digestibility were more pronounced when the combination of amylase and protease was fed at the highest dose.


Subject(s)
Cattle Diseases , Leukemia, Myeloid, Acute , Female , Cattle , Animals , Lactation , Peptide Hydrolases/metabolism , Propionates/metabolism , Fermentation , Detergents/metabolism , Digestion , Milk/metabolism , Diet/veterinary , Nutrients , Starch/metabolism , Body Weight , Amylases/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/veterinary , Rumen/metabolism , Animal Feed/analysis , Zea mays/metabolism , Cattle Diseases/metabolism
2.
J Dairy Sci ; 106(1): 233-244, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36333132

ABSTRACT

Lactation diets dependent on rumen undegradable protein (RUP) sources derived from soybean meal (SBM) products are generally high in Lys and poor in Met. We conducted an experiment to evaluate the effects of increasing dietary RUP and altering digestible AA supply by inclusion of heat-treated soybean meal (HTSBM) or high-protein corn dried distillers grains with soluble (DDGS) on performance in mid-lactation dairy cows. Twenty-four Holstein cows (200 ± 40 d in milk and 30.0 ± 3.92 kg/d of milk yield) blocked according to parity, milk yield, and days in milk were used in a 3 × 3 Latin square design experiment with 21-d periods. Treatments were (1) control (CON), a diet with 6.0% RUP containing 15.9% SBM as the main protein source; (2) HTSBM, a diet with 6.7% RUP containing 4.4% HTSBM partially replacing SBM; and (3) high-protein DDGS (FP; FlexyPro, SJC Bioenergia), a diet with 6.9% RUP containing 5.34% FP partially replacing SBM and ground corn. Diets had similar crude protein (16.9%) and net energy of lactation. Data were submitted to ANOVA using the mixed procedure of SAS software (SAS Institute Inc.). Treatment differences were evaluated using orthogonal contrasts: (1) increasing RUP (SBM vs. HTSBM + FP) and (2) altering digestible AA supply (HTSBM vs. FP). Cows fed HTSBM and FP had greater intake (values in parentheses represent treatment means of CON, HTSBM, and FP, respectively) of neutral detergent fiber (7.14, 7.35, and 7.69 kg/d), crude protein (4.27, 4.37, and 4.51 kg/d), and ether extract (0.942, 0.968, and 1.04 kg/d) compared with cows fed CON. Feeding FP resulted in greater intake of neutral detergent fiber and ether extract compared with HTSBM. Cows fed HTSBM and FP had lower sorting index for feed particles <4 mm than cows fed CON (1.029, 1.008, and 1.022). Feeding FP resulted in greater intake of feed particles <4 mm compared with HTSBM. Treatments containing HTSBM or FP tended to decrease organic matter digestibility (72.4, 71.2, and 71.1%), but no other effects were detected in digestibility of neutral detergent fiber, crude protein, or ether extract. No evidence for differences among treatments was detected in excretion of purine derivatives in milk and urine. Milk yield was greater in cows fed HTSBM or FP than in cows fed CON (28.0, 28.9, and 28.8 kg/d, respectively). Cows fed HTSBM or FP tended to have greater energy-corrected milk and protein yield compared with those fed CON. Milk protein concentration was greater in DDGS cows than those in the HTSBM group (3.45 and 3.40%, respectively). No differences were detected in milk fat yield and concentration, milk urea nitrogen, feed efficiency, or serum concentrations of urea and glucose. Overall, increasing dietary RUP by feeding HTSBM or FP improved intake of nutrients and milk yield without affecting feed efficiency. Altering digestible AA supply while maintaining similar dietary RUP had negligible effects on performance of cows.


Subject(s)
Animal Feed , Zea mays , Pregnancy , Female , Cattle , Animals , Zea mays/metabolism , Animal Feed/analysis , Hot Temperature , Detergents/metabolism , Flour , Lactation , Rumen/metabolism , Diet/veterinary , Glycine max/metabolism , Dietary Proteins/metabolism , Nutrients , Urea/metabolism , Ethers/metabolism , Plant Extracts/metabolism
3.
J Dairy Sci ; 105(7): 5714-5722, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35525616

ABSTRACT

Dry malt extract (DME) has been used in animal nutrition as an alternative source of rapidly fermentable carbohydrate. An experiment was conducted to evaluate the partial replacement of ground corn with DME in diets of dairy cows on apparent digestibility, ruminal fermentation, predicted rumen microbial protein supply, N excretion, serum urea-N concentration, and milk yield and composition. Twenty-eight Holstein cows (35.3 ± 5.88 kg/d milk yield and 148 ± 78 d in milk), 4 of which were rumen cannulated, were blocked according to the presence of rumen cannulas, parity, milk yield, and days in milk and enrolled into a crossover design experiment. Experimental periods lasted 21 d, of which the first 14 d were allowed for treatment adaptation and 7 d were used for data collection and sampling. Treatment sequences were composed of control (CON) or DME from barley (Liotécnica Tecnologia em Alimentos) replacing ground corn at 7.62% diet dry matter (~2 kg/d). Data were analyzed using the MIXED procedure of SAS (SAS Institute Inc.) modeling the fixed effects of treatment, period, and their interaction, in addition to the random effect of animal. Ruminal fermentation data were analyzed as repeated measures including time and its interaction with treatment in the previous model as fixed effects. Treatments did not affect nutrient intake or feed sorting. Dry malt extract increased apparent digestibility of CP. Feeding DME decreased ruminal pH and molar percentage of butyrate and increased molar percentage of acetate. No treatment effects were detected for predicted rumen microbial protein supply or N excretion. Cows fed DME had lower serum urea-N concentration than CON cows. Dry malt extract increased yields of actual milk, 3.5% fat-corrected milk, fat, and protein, and improved feed efficiency (fat-corrected milk ÷ dry matter intake). Cows fed DME had lower milk urea nitrogen content in comparison with CON cows. Dry malt extract can partially replace ground corn in the diet while improving milk yield and feed efficiency.


Subject(s)
Hordeum , Milk , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Female , Fermentation , Lactation , Milk/chemistry , Nutrients , Plant Extracts/pharmacology , Rumen/metabolism , Urea/metabolism , Zea mays/chemistry
4.
J Dairy Sci ; 105(2): 1625-1637, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34802732

ABSTRACT

Mastitis affects a high proportion of dairy cows and is still one of the greatest challenges faced by the dairy industry. Staphylococcal bacteria remain the most important cause of mastitis worldwide. We investigated how distinct staphylococcal species evade some critical host defense mechanisms, which may dictate the establishment, severity, and persistence of infection and the outcome of possible therapeutic and prevention interventions. Thus, the present study investigated variations among distinct bovine-associated staphylococci in their capability to resist phagocytosis and to trigger respiratory burst activity of blood and milk polymorphonuclear neutrophil leukocytes (PMNL) in dairy cows. To do so, PMNL of 6 primiparous and 6 multiparous dairy cows were used. A collection of 38 non-aureus staphylococci (NAS) and 12 Staphylococcus aureus were included. The phagocytosis and intracellular reactive oxygen species (ROS) production by blood and milk PMNL were analyzed by flow cytometry. Phagocytosis, by both blood and milk PMNL, did not differ between S. aureus and NAS as a group, although within-NAS species differences were observed. Staphylococcus chromogenes (a so-called milk-adapted NAS species) better resisted phagocytosis by blood PMNL than the so-called environmental (i.e., Staphylococcus fleurettii) and opportunistic (i.e., Staphylococcus haemolyticus) NAS species. Otherwise, S. haemolyticus was better phagocytosed by blood PMNL than S. aureus, S. fleurettii, and S. chromogenes. No influence of the origin of the isolates within the staphylococci species in the resistance to phagocytosis by blood and milk PMNL was found. Overall, both S. aureus and NAS did not inhibit intracellular ROS production in blood and milk PMNL. Non-aureus staphylococci induced fewer ROS by milk PMNL than S. aureus, which was not true for blood PMNL, although species-specific differences in the intensity of ROS production were observed. Staphylococcus chromogenes induced more blood PMNL ROS than S. fleurettii and S. haemolyticus, and as much as S. aureus. Conversely, S. chromogenes induced fewer milk PMNL ROS than S. aureus. The origin of the isolates within the staphylococci species did not affect the ROS production by blood and milk PMNL. In conclusion, our study showed differences in staphylococci species in evading phagocytosis and triggering ROS production, which may explain the ability of some staphylococci species (i.e., S. aureus and S. chromogenes) to cause persistent infection and induce inflammation.


Subject(s)
Cattle Diseases , Mastitis, Bovine , Staphylococcal Infections , Animals , Cattle , Female , Mammary Glands, Animal , Milk , Neutrophils , Persistent Infection/veterinary , Phagocytosis , Respiratory Burst , Staphylococcal Infections/veterinary , Staphylococcus aureus
5.
J Dairy Sci ; 104(12): 12508-12519, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34600703

ABSTRACT

The objective of this study was to evaluate the effects of exogenous enzymes on nutrient intake and digestibility, rumen fermentation, and productivity of mid-lactating cows. Experiment 1 was designed to test increasing doses [0, 0.5, 1.0, or 1.5 g/kg of dry matter (DM)] of a combination of 2 enzyme products with xylanase and ß-glucanase activities (Ronozyme Wx and Ronozyme VP, respectively; DSM Nutritional Products) on rumen fermentation and total apparent digestibility. Enzyme combinations had a ratio of endo-1,3(4)-ß-glucanase to endo-1,4-ß-xylanase of 8:2 (wt/wt). For experiment 1, 8 rumen cannulated lactating cows were used into a double 4 × 4 Latin square design experiment with 14 d of diet adaptation and 7 d of sampling. Despite no differences in feed intake, carbohydrases linearly increased neutral detergent fiber digestibility. Treatments marginally affected rumen fermentation, where a linear trend for lower rumen pH and a linear trend for greater isobutyrate concentration were observed with increasing enzyme dose. A trend for lower rumen NH3-N concentration was observed for cows receiving carbohydrases in comparison with control group. When comparing all enzyme treatments against control group, cows fed enzymes tended to produce more 3.5% fat-corrected milk (FCM), produced more milk fat, and had greater blood glucose concentration. Experiment 2 evaluated 3 doses (0, 0.5, or 0.75 g/kg of DM) of the same combination of enzyme products on performance of cows (n = 36) in a complete randomized block (n = 12) design. Cows received treatments for 9 wk. No interaction effects between treatments and time were observed for all variables assessed in this study. In agreement with experiment 1, no differences were detected for feed intake, but cows fed the enzyme products tended to produce more 3.5% FCM and milk fat compared with control. In addition, cows fed enzymes exhibited greater efficiency of FCM production (FCM ÷ DM intake) compared with control. No differences were detected for intake and productivity when comparing the 2 doses of carbohydrases. In summary, the enzyme products tested in this study may improve feed efficiency due to greater milk fat concentration.


Subject(s)
Lactation , Rumen , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Female , Fermentation , Glycoside Hydrolases , Milk , Nutrients , Rumen/metabolism
6.
J Dairy Sci ; 104(11): 11634-11645, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34454761

ABSTRACT

The objective of this study was to evaluate the effects of feed additives on intake and digestibility of nutrients, milk yield and composition, feeding behavior, and physiological parameters of dairy cows during the hot season. Forty Holstein cows were assigned to a randomized block design experiment with a 2 × 2 factorial treatment arrangement to evaluate (1) control diet without inclusion of additives; (2) monensin (MON), 20 mg/kg diet dry matter sodium monensin (Rumensin; Elanco); (3) Milk Sacc+ (MS+), inclusion of 40 g/cow per d of Milk Sacc+ (a blend of live yeast and organic minerals, Alltech); and (4) combination of MON and MS+. The average temperature-humidity index throughout the experimental period was 73 ± 2.84 (standard deviation). The experiment lasted 11 wk, including 2 preliminary weeks for covariate adjustments. Cows fed MS+ increased dry matter intake (% body weight), milk yield, 3.5% fat-corrected milk, and solids yield, and cows fed MON had greater milk urea nitrogen content in comparison with counterparts. Feeding MS+ increased the intake of feed particles with size between 8 and 19 mm and decreased the intake of particles shorter than 4 mm compared with other treatments. Rumination time (min/d) and chewing time (min/kg of neutral detergent fiber) were lower for cows fed MS+. Physiologic parameters (i.e., heart and respiratory rates, and body temperature) were not affected by the treatments. Overall, the use of monensin did not differ from control, and Milk Sacc+ improved performance of cows.


Subject(s)
Monensin , Saccharomyces cerevisiae , Animal Feed/analysis , Animals , Cattle , Diet/veterinary , Digestion , Female , Lactation , Milk , Minerals , Monensin/pharmacology , Rumen , Seasons
7.
Curr Top Med Chem ; 20(6): 485-497, 2020.
Article in English | MEDLINE | ID: mdl-31924155

ABSTRACT

The alternative lengthening of telomere (ALT) is a pathway responsible for cell immortalization in some kinds of tumors. Since the first description of ALT is relatively recent in the oncology field, its mechanism remains elusive, but recent works address ALT-related proteins or cellular structures as potential druggable targets for more specific and efficient antitumor therapies. Moreover, some new generation compounds for antitelomerase therapy in cancer were able to provoke acquisition of ALT phenotype in treated tumors, enhancing the importance of studies on this alternative lengthening of the telomere. However, ALT has been implicated in different - sometimes opposite - outcomes, according to the tumor type studied. Then, in order to design and develop new drugs for ALT+ cancer in an effective way, it is crucial to understand its clinical implications. In this review, we gathered works published in the last two decades to highlight the clinical relevance of ALT on oncology.


Subject(s)
Neoplasms/genetics , Telomere Homeostasis , Telomere/genetics , Humans
8.
J Dairy Sci ; 102(6): 5054-5065, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30954254

ABSTRACT

This study aimed to evaluate the effects of increasing dietary levels of microalgae (ALG), rich in docosahexaenoic acid (DHA; All-G-Rich, Alltech, Nicholasville, KY), in isolipidic diets, on animal performance, nutrient digestibility, ruminal fermentation, milk fatty acid profile, energy balance, microbial protein synthesis, and blood serum metabolites in mid-lactating dairy cows. Twenty-four Holstein cows [130.3 ± 15.4 d in milk, and 30.8 ± 0.543 kg/d of milk yield (mean ± standard error)] were used in a 4 × 4 Latin square design experiment to evaluate the following treatments: control diet, without addition of ALG; and increasing levels of ALG [2, 4, and 6 g/kg of dry matter (DM)]. The ALG decreased DM intake and increased total-tract DM apparent digestibility. A tendency was observed for a quadratic effect on total-tract NDF digestibility by ALG inclusion, with peak value of the quadratic response at 4.13 g/kg of DM dose. Moreover, ALG increased ruminal pH and decreased acetate and total volatile fatty acid concentrations. Fat-corrected milk and energy-corrected milk were quadratically affected, and a tendency for a milk yield effect was observed when ALG levels increased, whereas maximal yields were observed with intermediate doses. Milk fat, protein, and lactose concentrations were diminished, whereas productive efficiency was improved by the increase of ALG levels. Saturated fatty acid proportions were decreased, whereas polyunsaturated fatty acid proportions were increased when ALG was fed. There was low DHA transfer into milk; however, ALG inclusion decreased C18:0, C18:1 cis-9, C18:2 cis-9,12, and C18:3 cis-9,12,15 proportions, and increased C18:2 cis-9,trans-11, C18:1 trans-9, and C18:1 trans-11 proportions. Gross energy intake was decreased, whereas no effect was observed on digestible, metabolizable, or net energy intake. The ALG inclusion quadratically affected the microbial protein synthesis, with maximal enhancement at 3.24 g/kg of DM dose, and also increased serum cholesterol concentration. Under the conditions of this experiment, the inclusion of ALG in diets for mid-lactating dairy cows decreased feed intake and increased nutrient digestibility, improving productive efficiency and modifying milk fatty acid profile. Estimated intermediate doses (1.22 to 2.90 g/kg of DM) of DHA-rich ALG may be beneficial to milk, fat-corrected milk, and energy-corrected milk yields, and is recommended for dairy cows.


Subject(s)
Animal Feed , Cattle , Diet/veterinary , Docosahexaenoic Acids/pharmacology , Fatty Acids, Volatile/metabolism , Microalgae , Milk/metabolism , Rumination, Digestive , Animal Feed/analysis , Animals , Dairying , Female , Fermentation , Lactation , Lactose/metabolism , Random Allocation , Rumen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...