Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123704, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38070311

ABSTRACT

It is reported the synthesis, characterization by elemental analysis, thermogravimetry; electronic absorption, infrared, excitation, and emission spectroscopies of the [Eu(12C4)(phen)2(X)n]X2 complexes, where 12C4 = 12-crown-4, phen = 1,10-phenanthroline, and X  = F-, Cl-, Br-, SCN-, ClO4-, and NO3-. It is verified that the polarizability of the anion X- exerts remarkable effects on the emission process. As a general trend, lower wavenumbers for the 7F0→5L6, 7F0→5D2 and 7F0→5D1 transitions are associated with the anions with higher volumes and, consequently, higher polarizability. The molecular modeling results performed with quantum methods (RHF and DFT) suggest some relationships between the calculated structures, electronic, and luminescence properties with the presence of the LMCT (ligand-to-metal charge transfer) states, which explains the differences in the emission spectra of these complexes due to the coordinated anion.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 296: 122677, 2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37030253

ABSTRACT

Three new complexes Na[Ln(pic)4]ּ⋅2.5H2O (Ln = Tb, Eu or Gd; pic = picolinate) were synthesized and characterized by infrared spectroscopy, powder X-ray diffraction and thermogravimetric analyses. The molecular structures of the complexes have been determined by single-crystal X-ray diffraction. The three isostructural lanthanide complexes crystalize in the hexagonal system with space group P6122 to Eu complex and Gd complex and space group P6522 to Tb complex. In each of the complexes, the picolinate ligands are bonded to Ln3+ and Na+ ions by different coordination modes promoting polymeric structures. The photoluminescent properties of complexes were studied and combined with theoretical studies using the density functional theory (DFT: B3LYP, PBE1PBE) and the semiempirical method AM1/Sparkle from the single crystal X-ray diffraction structures to assign a suitable model for describing the system. The B3LYP DFT functional was considered the most adequate for providing structural properties of the compounds and for describing luminescence properties. The excited triplet states (T1) and excited singlet states (S1) of the ligand were determined theoretically using Time-dependent DFT calculations (TD-DFT: B3LYP, CAM-B3LYP and LC-wPBE) and INDO/S-CIS, with the best agreement with experimental values obtained from the LC-wPBE DFT functional. The photoluminescent spectra of the complexes and their lifetime measurements were determined indicating that the Eu complex and Tb complex display different intramolecular energy transfer mechanisms with higher efficiency to ligand-to-terbium energy transfer. In addition, the experimental and theorical Judd-Ofelt intensity parameters and quantum yields of the complexes were also determined and discussed besides to a proposed 9-state diagram to describe the luminescence properties of the Eu complex. The low value of emission quantum efficiency of 5D0 emitting level of Eu(III) ion was explained by the presence of the ligand-to-metal charge transfer state (LMCT) evidenced experimentally and theoretically. A good agreement was obtained between the proposed kinetic model and experimental results showing the consistency of the set of rate equations assumed and the intramolecular pathways proposed.

3.
J Phys Chem B ; 127(10): 2250-2257, 2023 Mar 16.
Article in English | MEDLINE | ID: mdl-36877152

ABSTRACT

Topological analyses of hydrogen bond networks were performed based on the complex network and island statistics of liquid water at different temperatures. The influence of temperature on the liquid water structures and the topological properties of the hydrogen bond networks was investigated by Metropolis Monte Carlo simulations with the TIP4P/2005 potential model. The bilinear behavior of the second peak in the radial distribution function with the temperature was properly reproduced by these simulations. The average connectivity also displayed a bilinear behavior consistent with being a local descriptor. The semiglobal average path length (or geodesic distance) descriptor showed an unprecedented trimodal distribution, whose areas were dependent on the temperature. Considering equilibrium between these three sets of networks, standard enthalpy and entropy of equilibrium were determined for the first time, providing new insights into the structural heterogeneities of liquid water with interesting perspectives for modeling these quantitative properties of hydrogen bond networks.

SELECTION OF CITATIONS
SEARCH DETAIL
...