ABSTRACT
In this study, we focus on advancing the methodology for detecting sulfur-containing compounds (SCCs) in crude oils and their derivatives. These compounds are critical for geochemical analysis, crude oil evaluation, and overcoming production and refining challenges. Although various analytical techniques exist, the precision and resolution power of Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) stand out. However, the current methods for characterizing SCCs in petroleum products often lack standardization and tend to be complex and time-consuming. Our research introduces the use of Atmospheric Pressure Chemical Ionization (APCI) as an efficient alternative. We employed a mixture of toluene and methanol (1 : 1 ratio) for APCI, which demonstrated superior performance in sulfur speciation compared to mixtures of toluene and acetonitrile. Our specified method showed high repeatability, with coefficients of variation reported between 5% and 14%. This method effectively covers a wide range of double bond equivalents (DBEs) from 1 to 25 and various carbon numbers, demonstrating notable repeatability and reproducibility. Compared to results from ESI post-S-methylation and Atmospheric Pressure Photoionization (APPI), APCI offers a more comprehensive analysis of sulfur compounds, presenting a broad spectrum of molecular formulae and extending across a vast range of carbon numbers and DBEs. Here, we demonstrate that APCI is a robust and efficient method for direct and extensive sulfur speciation in crude oil and its high-boiling fractions, marking a significant advancement over existing techniques. This methodological improvement opens new pathways for more accurate and efficient sulfur compound analysis in petroleum products.
ABSTRACT
Severe manifestations of coronavirus disease 2019 (COVID-19) and mortality have been associated with physiological alterations that provide insights into the pathogenesis of the disease. Moreover, factors that drive recovery from COVID-19 can be explored to identify correlates of protection. The cellular metabolism represents a potential target to improve survival upon severe disease, but the associations between the metabolism and the inflammatory response during COVID-19 are not well defined. We analyzed blood laboratorial parameters, cytokines, and metabolomes of 150 individuals with mild to severe disease, of which 33 progressed to a fatal outcome. A subset of 20 individuals was followed up after hospital discharge and recovery from acute disease. We used hierarchical community networks to integrate metabolomics profiles with cytokines and markers of inflammation, coagulation, and tissue damage. Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes significant alterations in the plasma metabolome, whose activity varies according to disease severity and correlates with oxygen saturation. Differential metabolism underlying death was marked by amino acids and related metabolites, such as glutamate, glutamyl-glutamate, and oxoproline, and lipids, including progesterone, phosphocholine, and lysophosphatidylcholines (lysoPCs). Individuals who recovered from severe disease displayed persistent alterations enriched for metabolism of purines and phosphatidylinositol phosphate and glycolysis. Recovery of mild disease was associated with vitamin E metabolism. Data integration shows that the metabolic response is a hub connecting other biological features during disease and recovery. Infection by SARS-CoV-2 induces concerted activity of metabolic and inflammatory responses that depend on disease severity and collectively predict clinical outcomes of COVID-19. IMPORTANCE COVID-19 is characterized by diverse clinical outcomes that include asymptomatic to mild manifestations or severe disease and death. Infection by SARS-CoV-2 activates inflammatory and metabolic responses that drive protection or pathology. How inflammation and metabolism communicate during COVID-19 is not well defined. We used high-resolution mass spectrometry to investigate small biochemical compounds (<1,500 Da) in plasma of individuals with COVID-19 and controls. Age, sex, and comorbidities have a profound effect on the plasma metabolites of individuals with COVID-19, but we identified significant activity of pathways and metabolites related to amino acids, lipids, nucleotides, and vitamins determined by disease severity, survival outcome, and recovery. Furthermore, we identified metabolites associated with acute-phase proteins and coagulation factors, which collectively identify individuals with severe disease or individuals who died of severe COVID-19. Our study suggests that manipulating specific metabolic pathways can be explored to prevent hyperinflammation, organ dysfunction, and death.
ABSTRACT
Here we discovered an unprecedented giant octahedral coordination compound bearing 16 Zn2+, 12 Na+, 8 O2-, 4 OH-, 13 H2O and 6 L4- ligands [L4- = fully deprotonated tetra(carboxymethoxy)calix[4]arene]. Its structure was elucidated by single-crystal X-ray diffraction, wavelength-dispersive X-ray spectroscopy and MALDI-TOF mass spectrometry. This compound, Zn8Na6L6âZn8Na6O8(OH)4(H2O)13 (externalâinternal), has eight tetrahedral zinc ions forming the coordination vertices of an outermost cube where carboxylate groups from the sodium calixarenes are anchored. Its core consists of eight Zn2+, six Na+, eight O2-, and four OH- distributed over three layers, besides thirteen coordinated H2O molecules.
ABSTRACT
The analyses of drugs and metabolites in complex matrices have been widely studied in recent years. However, due to high levels endogenous compounds and matrix complexity, these analyses require a sample pre-treatment step. To this aim, two lab-made extractive phases were integrated to probe electrospray ionization mass spectrometry (PESI-MS) technique for direct analysis of illicit drugs in biological fluids and phorbol esters in Jatropha curcas extract. The polypyrrole (PPy) phase was electropolymerized onto a platinum wire surface by cyclic voltammetry. The molecularly imprinted polymer (MIP) was synthesized and adhered onto a stainless-steel needle with epoxy resin. The PPy-PESI-MS method showed to be linear in a concentration range from 1 to 500⯵g L-1, with accuracy values between -2.1 and 14%, and precision values between 0.8 and 10.8%. The MIP-PESI-MS method showed to be linear in a concentration range from 0.9 to 30â¯mgâ¯L-1, with accuracy values between -1.6 and -15.3%, and precision values between 4.1 and 13.5%.