Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Omega ; 9(29): 31569-31577, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39072102

ABSTRACT

Developing thin, freestanding electrodes that work simultaneously as a current collector and electroactive material is pivotal to integrating portable and wearable chemical sensors. Herein, we have synthesized graphene/Prussian blue (PB) electrodes for hydrogen peroxide detection (H2O2) using a two-step method. First, an reduced graphene oxide/PAni/Fe2O3 freestanding film is prepared using a doctor blade technique, followed by the electrochemical deposition of PB nanoparticles over the films. The iron oxide nanoparticles work as the iron source for the heterogeneous electrochemical deposition of the nanoparticles in a ferricyanide solution. The size of the PB cubes electrodeposited over the graphene-based electrodes was controlled by the number of voltammetric cycles. For H2O2 sensing, the PB10 electrode achieved the lowest detection and quantification limits, 2.00 and 7.00 µM, respectively. The findings herein evidence the balance between the structure of the graphene/PB-based electrodes with the electrochemical performance for H2O2 detection and pave the path for developing new freestanding electrodes for chemical sensors.

2.
Inorg Chem ; 60(18): 14174-14189, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34477373

ABSTRACT

Ruthenium(II) complexes (Ru1-Ru5), with the general formula [Ru(N-S)(dppe)2]PF6, bearing two 1,2-bis(diphenylphosphino)ethane (dppe) ligands and a series of mercapto ligands (N-S), have been developed. The combination of these ligands in the complexes endowed hydrophobic species with high cytotoxic activity against five cancer cell lines. For the A549 (lung) and MDA-MB-231 (breast) cancer cell lines, the IC50 values of the complexes were 288- to 14-fold lower when compared to cisplatin. Furthermore, the complexes were selective for the A549 and MDA-MB-231 cancer cell lines compared to the MRC-5 nontumor cell line. The multitarget character of the complexes was investigated by using calf thymus DNA (CT DNA), human serum albumin, and human topoisomerase IB (hTopIB). The complexes potently inhibited hTopIB. In particular, complex [Ru(dmp)(dppe)2]PF6 (Ru3), bearing the 4,6-diamino-2-mercaptopyrimidine (dmp) ligand, effectively inhibited hTopIB by acting on both the cleavage and religation steps of the catalytic cycle of this enzyme. Molecular docking showed that the Ru1-Ru5 complexes have binding affinity by active sites on the hTopI and hTopI-DNA, mainly via π-alkyl and alkyl hydrophobic interactions, as well as through hydrogen bonds. Complex Ru3 displayed significant antitumor activity against murine melanoma in mouse xenograph models, but this complex did not damage DNA, as revealed by Ames and micronucleus tests.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA Topoisomerases, Type I/metabolism , Phosphines/pharmacology , Ruthenium/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Drug Screening Assays, Antitumor , Humans , Ligands , Phosphines/chemistry , Ruthenium/chemistry , Topoisomerase I Inhibitors/chemical synthesis , Topoisomerase I Inhibitors/chemistry , Tumor Cells, Cultured
3.
Dalton Trans ; 48(39): 14885-14897, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31555783

ABSTRACT

Herein we discuss five ruthenium(ii) complexes with good cytotoxicity against cancer cells. These complexes are named [Ru(tzdt)(bipy)(dppb)]PF6 (1), [Ru(mmi)(bipy)(dppb)]PF6 (2), [Ru(dmp)(bipy)(dppb)]PF6 (3), [Ru(mpca)(bipy)(dppb)]PF6 (4) and [Ru(2mq)(bipy)(dppb)]PF6 (5), where tzdt = 1,3-thiazolidine-2-thione, mmi = mercapto-1-methyl-imidazole, dmp = 4,6-diamino-2-mercaptopyrimidine, mpca = 6-mercaptopyridine-3-carboxylic acid, 2mq = 2-mercapto-4(3H)-quinazolinone, bipy = 2,2'-bipyridine and dppb = 1,4-bis(diphenylphosphino)butane. In vitro cell culture experiments revealed significant cytotoxic activity for 1-5 against MDA-MB-231, MCF-7, A549, DU-145 and HepG2 tumor cells, higher than that for the standard anticancer drug cisplatin. Compound/DNA interaction studies were carried out showing that 1-5 interact with DNA by electrostatic force of attraction or by hydrogen bonding. Moreover, the complexes interact, moderately and spontaneously, with human serum albumin (HSA) through the hydrophobic region. The five complexes are able to inhibit the DNA supercoiled relaxation mediated by human topoisomerase IB (TopIB), and complex 1 is found to be the most efficient TopIB inhibitor among the five compounds. The inhibitory effect and analysis of different steps of the TopIB catalytic cycle indicate that complex 1 inhibits the cleavage reaction impeding the binding of the enzyme to DNA and has no effect on the religation step. Complexes 1, 2 and 3 did not show mutagenic activity when they were evaluated by the cytokinesis-block micronucleus cytome assay in HepG2 cells and the Ames test in the presence and absence of mouse liver S9 metabolic activation. Therefore, it is necessary to perform further in-depth analysis of the therapeutic potential of these promising ruthenium complexes as anticancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Cytoprotection/drug effects , DNA/metabolism , Neoplasms/pathology , Ruthenium Compounds/pharmacology , Topoisomerase I Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Coordination Complexes/chemistry , Humans , Micronuclei, Chromosome-Defective/drug effects , Neoplasms/drug therapy , Neoplasms/metabolism , Ruthenium Compounds/chemistry , Topoisomerase I Inhibitors/chemistry , Tumor Cells, Cultured
4.
Front Oncol ; 9: 562, 2019.
Article in English | MEDLINE | ID: mdl-31338323

ABSTRACT

Herein, ruthenium complexes containing heterocyclic thioamidates [Ru(mmi)(bipy)(dppb)]PF6 (1), [Ru(tzdt)(bipy)(dppb)]PF6 (2), [Ru(dmp)(bipy)(dppb)]PF6 (3) and [Ru(mpca)(bipy)(dppb)]PF6 (4) were investigated for their cellular and molecular effects in cancer cell lines. Complexes 1 and 2 were the most potent of the four compounds against a panel of different cancer cell lines in monolayer cultures and showed potent cytotoxicity in a 3D model of multicellular spheroids that formed from human hepatocellular carcinoma HepG2 cells. In addition, both complexes were able to bind to DNA in a calf thymus DNA model. Compared to the controls, a reduction in cell proliferation, phosphatidylserine externalization, internucleosomal DNA fragmentation, and the loss of the mitochondrial transmembrane potential were observed in HepG2 cells that were treated with these complexes. Additionally, coincubation with a pan-caspase inhibitor (Z-VAD(OMe)-FMK) reduced the levels of apoptosis that were induced by these compounds compared to those in the negative controls, indicating that cell death through apoptosis occurred via a caspase-dependent pathway. Moreover, these complexes also induced the phosphorylation of ERK1/2, and coincubation with an MEK inhibitor (U0126), which is known to inhibit the activation of ERK1/2, but not JNK/SAPK and p38 MAPK inhibitors, reduced the complexes-induced apoptosis compared to that in the negative controls, indicating that the induction of apoptotic cell death occurred through ERK1/2 signaling in HepG2 cells. On the other hand, no increase in oxidative stress was observed in HepG2 cells treated with the complexes, and the complexes-induced apoptosis was not reduced with coincubation with the antioxidant N-acetylcysteine or a p53 inhibitor compared to that in the negative controls, indicating that apoptosis occurred via oxidative stress- and p53-independent pathways. Finally, these complexes also reduced the growth of HepG2 cells that were engrafted in C.B-17 SCID mice compared to that in the negative controls. These results indicated that these complexes are novel anticancer drug candidates for liver cancer treatment.

5.
Biometals ; 32(1): 89-100, 2019 02.
Article in English | MEDLINE | ID: mdl-30506342

ABSTRACT

Due to their unique and versatile biochemical properties, ruthenium-based compounds have emerged as promising anticancer agents. Previous studies showed that three ruthenium(II) compounds: [Ru(pySH)(bipy)(dppb)]PF6 (1), [Ru(HSpym)(bipy)(dppb)]PF6 (2) and Ru[(SpymMe2)(bipy)(dppb)]PF6 (3) presented anticancer properties higher than doxorubicin and cisplatin and acted as human topoisomerase IB (Topo I) inhibitors. Here, we focused our studies on in vitro intestinal permeability and anticancer mechanisms of these three complexes. Caco-2 permeation studies showed that 1 did not permeate the monolayer of intestinal cells, suggesting a lack of absorption on oral administration, while 2 and 3 permeated the cells after 60 and 120 min, respectively. Complexes 2 and 3 fully inhibited Topo II relaxation activity at 125 µM. In previously studies, 3 was the most potent inhibitor of Topo I, here, we concluded that it is a dual topoisomerase inhibitor. Moreover, it presented selectivity to cancer cells when evaluated by clonogenic assay. Thus, 3 was selected to gene expression assay front MDA-MB-231 cells from triple-negative breast cancer (TNBC), which represents the highly aggressive subgroup of breast cancers with poor prognosis. The analyses revealed changes of 27 out of 84 sought target genes. PARP1 and PARP2 were 5.29 and 1.83 times down-regulated after treatment with 3, respectively. PARPs have been attractive antitumor drug targets, considering PARP inhibition could suppress DNA damage repair and sensitize tumor cells to DNA damage agents. Recent advances in DNA repair studies have shown that an approach that causes cell lethality using synthetic PARP-inhibiting drugs has produced promising results in TNBC.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Ruthenium/pharmacology , Topoisomerase II Inhibitors/pharmacology , Antineoplastic Agents/chemistry , Caco-2 Cells , Cell Line , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemistry , DNA Topoisomerases, Type II/metabolism , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Poly(ADP-ribose) Polymerase Inhibitors/chemistry , Poly(ADP-ribose) Polymerases/metabolism , Ruthenium/chemistry , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemistry
6.
Biometals ; 30(3): 321-334, 2017 06.
Article in English | MEDLINE | ID: mdl-28303361

ABSTRACT

Three ruthenium(II) phosphine/diimine/picolinate complexes were selected aimed at investigating anticancer activity against several cancer cell lines and the capacity of inhibiting the supercoiled DNA relaxation mediated by human topoisomerase IB (Top 1). The structure-lipophilicity relationship in membrane permeability using the Caco-2 cells have also been evaluated in this study. SCAR 5 was found to present 45 times more cytotoxicity against breast cancer cell when compared to cisplatin. SCAR 4 and 5 were both found to be capable of inhibiting the supercoiled DNA relaxation mediated by Top 1. Interaction studies showed that SCAR 4 and 5 can bind to DNA through electrostatic interactions while SCAR 6 is able to bind covalently to DNA. The complexes SCAR were found to interact differently with bovine serum albumin (BSA) suggesting hydrophobic interactions with albumin. The permeability of all complexes was seen to be dependent on their lipophilicity. SCAR 4 and 5 exhibited high membrane permeability (P app  > 10 × 10-6 cm·s-1) in the presence of BSA. The complexes may pass through Caco-2 monolayer via passive diffusion mechanism and our results suggest that lipophilicity and interaction with BSA may influence the complexes permeation. In conclusion, we demonstrated that complexes have powerful pharmacological activity, with different results for each complex depending on the combination of their ligands.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type I/metabolism , Organometallic Compounds/pharmacology , Ruthenium/pharmacology , Topoisomerase Inhibitors/administration & dosage , Topoisomerase Inhibitors/pharmacology , Administration, Oral , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Binding Sites/drug effects , Cattle , Cell Line, Tumor , Cell Proliferation/drug effects , DNA/antagonists & inhibitors , DNA/chemistry , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Organometallic Compounds/administration & dosage , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Ruthenium/administration & dosage , Ruthenium/chemistry , Serum Albumin, Bovine/antagonists & inhibitors , Serum Albumin, Bovine/chemistry , Structure-Activity Relationship , Topoisomerase Inhibitors/chemical synthesis , Topoisomerase Inhibitors/chemistry
7.
Metallomics ; 8(2): 179-92, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26758075

ABSTRACT

Herein we synthesized two new ruthenium(II) compounds [Ru(pySH)(bipy)(dppb)]PF6 (1) and [Ru(HSpym)(bipy)(dppb)]PF6 (2) that are analogs to an antitumor agent recently described, [Ru(SpymMe2)(bipy)(dppb)]PF6 (3), where [(Spy) = 2-mercaptopyridine anion; (Spym) = 2-mercaptopyrimidine anion and (SpymMe2) = 4,6-dimethyl-2-mercaptopyrimidine anion]. In vitro cell culture experiments revealed significant anti-proliferative activity for 1-3 against HepG2 and MDA-MB-231 tumor cells, higher than the standard anti-cancer drugs doxorubicin and cisplatin. No mutagenicity is detected when compounds are evaluated by cytokinesis-blocked micronucleus cytome and Ames test in the presence and absence of S9 metabolic activation from rat liver. Interaction studies show that compounds 1-3 can bind to DNA through electrostatic interactions and to albumin through hydrophobic interactions. The three compounds are able to inhibit the DNA supercoiled relaxation mediated by human topoisomerase IB (Top1). Compound 3 is the most efficient Top1 inhibitor and the inhibitory effect is enhanced upon pre-incubation with the enzyme. Analysis of different steps of Top1 catalytic cycle indicates that 3 inhibits the cleavage reaction impeding the binding of the enzyme to DNA and slows down the religation reaction. Molecular docking shows that 3 preferentially binds closer to the residues of the active site when Top1 is free and lies on the DNA groove downstream of the cleavage site in the Top1-DNA complex. Thus, 3 can be considered in further studies for a possible use as an anticancer agent.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type I/drug effects , Ruthenium Compounds/pharmacology , Topoisomerase I Inhibitors/pharmacology , Cell Line, Tumor , DNA/chemistry , DNA/drug effects , DNA/metabolism , Hep G2 Cells , Humans , Molecular Docking Simulation
8.
J Inorg Biochem ; 156: 153-63, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26795676

ABSTRACT

Three new mixed and mononuclear Ru(II) complexes containing 1,3-thiazolidine-2-thione (tzdtH) were synthesized and characterized by spectroscopic analysis, molar conductivity, cyclic voltammetry, high-resolution electrospray ionization mass spectra and X-ray diffraction. The complexes presented unique stereochemistry and the proposed formulae are: [Ru(tzdt)(bipy)(dppb)]PF6 (1), cis-[Ru(tzdt)2(PPh3)2] (2) and trans-[Ru(tzdt)(PPh3)2(bipy)]PF6 (3), where dppb=1,4-bis(diphenylphosphino)butane and bipy=2,2'-bipyridine. These complexes demonstrated strong cytotoxicity against cancer cell lines when compared to cisplatin. Specifically, complex 2 was the most potent cytotoxic agent against MCF-7 breast cells, while complexes 1 and 3 were more active in DU-145 prostate cells. Binding of complexes to ctDNA was determined by UV-vis titration and viscosity measurements and revealed binding constant (Kb) values in range of 1.0-4.9×10(3)M(-1), which are characteristic of compounds possessing weak affinity to ctDNA. In addition, these complexes presented antiparasitic activity against Trypanosoma cruzi. Specifically, complex 3 demonstrated strong potency, moderate selectivity index and acted in synergism with the approved antiparasitic drug, benznidazole. Additionally, complex 3 caused parasite cell death through a necrotic process. In conclusion, we demonstrated that Ru(II) complexes have powerful pharmacological activity, while the metal-free tzdtH does not provoke the same outcome.


Subject(s)
Antineoplastic Agents/pharmacology , Antiprotozoal Agents/pharmacology , Ruthenium Compounds/chemistry , Thiazolidines/chemistry , Trypanosoma cruzi/drug effects , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , MCF-7 Cells
9.
Antimicrob Agents Chemother ; 58(10): 6044-55, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25092707

ABSTRACT

cis-[RuCl(NO2)(dppb)(5,5'-mebipy)] (complex 1), cis-[Ru(NO2)2(dppb)(5,5'-mebipy)] (complex 2), ct-[RuCl(NO)(dppb)(5,5'-mebipy)](PF6)2 (complex 3), and cc-[RuCl(NO)(dppb)(5,5'-mebipy)](PF6)2 (complex 4), where 5,5'-mebipy is 5,5'-dimethyl-2,2'-bipyridine and dppb is 1,4-bis(diphenylphosphino)butane, were synthesized and characterized. The structure of complex 2 was determined by X-ray crystallography. These complexes exhibited a higher anti-Trypanosoma cruzi activity than benznidazole, the current antiparasitic drug. Complex 3 was the most potent, displaying a 50% effective concentration (EC50) of 2.1 ± 0.6 µM against trypomastigotes and a 50% inhibitory concentration (IC50) of 1.3 ± 0.2 µM against amastigotes, while it displayed a 50% cytotoxic concentration (CC50) of 51.4 ± 0.2 µM in macrophages. It was observed that the nitrosyl complex 3, but not its analog lacking the nitrosyl group, releases nitric oxide into parasite cells. This release has a diminished effect on the trypanosomal protease cruzain but induces substantial parasite autophagy, which is followed by a series of irreversible morphological impairments to the parasites and finally results in cell death by necrosis. In infected mice, orally administered complex 3 (five times at a dose of 75 µmol/kg of body weight) reduced blood parasitemia and increased the survival rate of the mice. Combination index analysis of complex 3 indicated that its in vitro activity against trypomastigotes is synergic with benznidazole. In addition, drug combination enhanced efficacy in infected mice, suggesting that ruthenium-nitrosyl complexes are potential constituents for drug combinations.


Subject(s)
Autophagy/drug effects , Nitroso Compounds/pharmacology , Organometallic Compounds/pharmacology , Ruthenium/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Animals , Female , Mice , Mice, Inbred BALB C , Nitroso Compounds/chemistry , Organometallic Compounds/chemistry , Trypanocidal Agents/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL