Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Mol Biol ; 436(13): 168594, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38724002

ABSTRACT

The recent SARS-CoV-2 pandemic and associated COVID19 disease illustrates the important role of viral defence mechanisms in ensuring survival and recovery of the host or patient. Viruses absolutely depend on the host's protein synthesis machinery to replicate, meaning that impeding translation is a powerful way to counteract viruses. One major approach used by cells to obstruct protein synthesis is to phosphorylate the alpha subunit of eukaryotic translation initiation factor 2 (eIF2α). Mammals possess four different eIF2α-kinases: PKR, HRI, PEK/PERK, and GCN2. While PKR is currently considered the principal eIF2α-kinase involved in viral defence, the other eIF2α-kinases have also been found to play significant roles. Unsurprisingly, viruses have developed mechanisms to counteract the actions of eIF2α-kinases, or even to exploit them to their benefit. While some of these virulence factors are specific to one eIF2α-kinase, such as GCN2, others target all eIF2α-kinases. This review critically evaluates the current knowledge of viral mechanisms targeting the eIF2α-kinase GCN2. A detailed and in-depth understanding of the molecular mechanisms by which viruses evade host defence mechanisms will help to inform the development of powerful anti-viral measures.


Subject(s)
COVID-19 , Protein Serine-Threonine Kinases , SARS-CoV-2 , Humans , Protein Serine-Threonine Kinases/metabolism , COVID-19/virology , COVID-19/metabolism , SARS-CoV-2/physiology , Animals , Eukaryotic Initiation Factor-2/metabolism , Virus Replication , eIF-2 Kinase/metabolism , Phosphorylation , Host-Pathogen Interactions
2.
J Eukaryot Microbiol ; 64(4): 491-503, 2017 07.
Article in English | MEDLINE | ID: mdl-27864857

ABSTRACT

The unicellular protozoa Giardia lamblia is a food- and waterborne parasite that causes giardiasis. This illness is manifested as acute and self-limited diarrhea and can evolve to long-term complications. Successful establishment of infection by Giardia trophozoites requires adhesion to host cells and colonization of the small intestine, where parasites multiply by mitotic division. The tight binding of trophozoites to host cells occurs by means of the ventral adhesive disc, a spiral array of microtubules and associated proteins such as giardins. In this work we show that knock down of the Small Ubiquitin-like MOdifier (SUMO) results in less adhesive trophzoites, decreased cell proliferation and deep morphological alterations, including at the ventral disc. Consistent with the reduced proliferation, SUMO knocked-down trophozoites were arrested in G1 and in S phases of the cell cycle. Mass spectrometry analysis of anti-SUMO immunoprecipitates was performed to identify SUMO substrates possibly involved in these events. Among the identified SUMOylation targets, α-tubulin was further validated by Western blot and confirmed to be a SUMO target in Giardia trophozoites.


Subject(s)
Giardia lamblia/physiology , Small Ubiquitin-Related Modifier Proteins/genetics , Tubulin/metabolism , Cell Cycle , Gene Knockdown Techniques , Giardia lamblia/metabolism , Mass Spectrometry , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Small Ubiquitin-Related Modifier Proteins/metabolism , Sumoylation , Trophozoites/physiology
SELECTION OF CITATIONS
SEARCH DETAIL