Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 14(4)2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38396518

ABSTRACT

The aim was to evaluate the chemical composition, carbohydrates, protein fractionation and in vitro gas production of silages composed of spineless cactus and tropical forages and their effect on sheep performance. Treatments consisted of silages: corn silage (CS), spineless cactus silage (SCS), spineless cactus + gliricidia (SCG), spineless cactus + buffel grass silage (SCBG) and spineless cactus + pornunça (SCP). Silos were opened 60 days after ensiling, and analyses were carried out. The digestibility test lasted for 36 days, with eight animals per treatment. A completely randomized design was adopted. Considering carbohydrate fractionation, CS, SCS and SCBG silages had higher total carbohydrate content (p = 0.001). The SCS silage presented a higher A + B1 fraction (p = 0.001). The SCBG and SCG silages showed a higher B2 fraction (p < 0.0001) compared to the CS and SCS silages. The SCBG and SCP silages presented a higher C fraction (p = 0.001). For protein fractionation, the SCP and SCG silages showed higher crude protein contents (p = 0.001). The CS and SCS silages showed a higher A fraction (p = 0.001). The SCBG silage presented a higher B1 + B2 fraction (p = 0.001). The SCG silage showed a higher B3 fraction (p = 0.006) compared to SCBG silage. The SCS and SCP silages showed a higher C fraction (p = 0.001). Exclusive SCS silage showed higher in vitro dry matter digestibility (p = 0.001), dry matter degradability (p = 0.001) and total gas production (p = 0.001). The use of the SCBG, SCP and SCG silages to feed sheep increased the dry matter intake (p < 0.001). Sheep fed the SCG silage showed greater dry matter and crude protein digestibility compared to the sheep fed the CS, SCS and SCP silages (p = 0.002). There was a higher water intake (p < 0.001) with the use of the SCS and SCG silages to feed the sheep. The SCP and SCG silages provided a greater intake (p < 0.001) and excretion (p < 0.001) of nitrogen by the animals. Although there were no differences between the treatments for daily gains, lambs that received the spineless cactus-based silage associated with tropical forages showed higher gains (160-190 g/day) than lambs that received CS silage (130 g/day). Thus, the use of spineless cactus associated with buffelgrass, pornunça and gliricidia to prepare mixed silages (60:40) to feed sheep has potential use to feed sheep, with positive effects on nutrient degradation and increases in dry matter intake. Under experimental conditions, we recommend the exclusive use of spineless cactus silage associated with buffel grass, pornunça and gliricidia in feeding sheep in semi-arid regions, as it provides nutrients, water and greater daily gains compared to corn silage.

2.
Plants (Basel) ; 13(2)2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38256748

ABSTRACT

Cactus pear is used in large proportions in diets for small ruminants in semiarid regions. However, its exclusive use is not recommended due to the low fiber and crude protein content and the high water and mineral content, leading to metabolic disorders, low dry matter intake, and weight loss. The use of mixed cactus silage associated with protein and fibrous sources seeks to overcome the deficits in dry matter, fiber and crude protein, aiming to improve the nutritional quality of the diets that will be offered to ruminants. Thus, the use of gliricidia hay in cactus pear silages could represent an important alternative to improve the nutritional and fermentative characteristics of the ensiled material. Therefore, our aim was to evaluate the fermentation dynamics, nutritional characteristics, and aerobic stability of mixed silages of cactus pear combined with different levels of gliricidia hay. This was a completely randomized experimental design with five treatments and five repetitions. The treatments consisted of different levels of inclusion of gliricidia hay (0, 10, 20, 30, and 40% on a dry matter basis) in the composition of mixed cactus pear silages. The inclusion of gliricidia hay in the composition of mixed silages of cactus pear resulted in a quadratic effect for dry matter recovery, pH, NH3-N, buffering capacity, aerobic stability, ether extract, P, K, Na, and Zn (p < 0.05). There was a reduction in density, effluent losses, maximum pH, mineral matter, non-fiber carbohydrates, Ca, Mg, Fe, and Mn (p < 0.05), and an increase in the time to reach maximum pH as well as an upward trend in pH, dry matter, organic matter, crude protein, neutral detergent fiber, acid detergent fiber, and B (p < 0.05). Under experimental conditions, the inclusion of gliricidia hay between 20 and 30% in cactus pear-based silage provided an improvement to the chemical composition and fermentation parameters of the silages.

3.
Int J Phytoremediation ; 26(5): 784-792, 2024.
Article in English | MEDLINE | ID: mdl-37846073

ABSTRACT

In semi-arid regions, is necessary to explore strategies to mitigate abiotic stresses such as water deficit and salinity. This study aimed to evaluate the stress tolerance capacity of three species subjected to different water regimes and salinity levels, based on dry matter production and water use efficiency (WUE). The species Handroanthus impetiginosus, Vachellia farnesiana, and Amburana cearensis were evaluated in combination with different water regimes (50%, 75%, and 100% of reference evapotranspiration - ET0) and salinity levels (0.18, 1.50, and 1.90 dS m-1). The results show that biomass accumulation increased at 50% and 75% ET0, while the WUE decreased at 100% ET0. The salinity level (1.90 dS m-1) caused reductions in leaf dry biomass (LDB), total dry biomass (TDB), LDB/TDB ratio, and WUE. The negative effects of high salinity on plant height were greater with the application of 75% ET0. The highest WUE was obtained at 50% ET0 for A. cearensis and H. impetiginosus, while V. farnesiana obtained the highest WUE at 75% ET0. A. cearensis exhibited the highest biomass accumulation (2.58 g) and WUE (0.21 g L-1). Overall, the species can tolerate drought and salinity conditions, being sensitive to high salinity concentrations during their initial growth.


The Caatinga is characterized by low water availability and soil salinization. Therefore, assessing the ability of native species to cope with these conditions allows for their utilization in reforestation programs in drought and salinity-exposed environments. Studies on the combined effects of these factors are scarce. The results indicated that native species show tolerance to drought and salinity conditions, albeit with some reductions in biomass production and water use efficiency at high NaCl concentrations. Among the species, A. cearensis performed the best under water and salinity stress conditions.


Subject(s)
Fabaceae , Tabebuia , Salinity , Water , Salt Tolerance , Biodegradation, Environmental , Stress, Physiological
4.
Int J Biol Macromol ; 257(Pt 1): 128374, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38052289

ABSTRACT

Cactus pear cladodes, clones 'Miúda' (MIU) and 'Orelha de Elefante Mexicana' (OEM) were harvested at 6 am and 8 pm during the rainy-dry, dry and rainy seasons to evaluate the effect of type of clone and harvest seasons on the physicochemical and technological properties of mucilage as well as the optical, physicochemical, mechanical, thermal and microstructural characteristics of the films obtained. The mucilage of the OEM clone presented a higher content of phenolic compounds, compared to the Nopalea genus, regardless of the season and time of harvest. Furthermore, the dry period resulted in higher carbohydrate levels, regardless of the harvest time. The biopolymeric films produced from the OEM clone harvested in the rainy season and rainy-dry transition showed darker color, better mechanical properties, water barrier, compact microstructure and thermal stability when compared to the MIU clone. Furthermore, harvesting at 6 am provided improvements in the mechanical conditions, permeability and thermal stability of the films of both types of clones studied. These results showed strong environmental modulation, naturally incorporating important macromolecules such as carbohydrates and phenolic compounds, used in the industry in the production of nutraceutical foods, into the mucilage. Furthermore, harvesting cladodes at 6 am in the rainy and transitional (rainy-dry) periods provided better quality biopolymeric films and/or coatings.


Subject(s)
Opuntia , Opuntia/chemistry , Seasons , Polysaccharides , Carbohydrates , Water
5.
Sci Total Environ ; 895: 165102, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37356760

ABSTRACT

Some strategies can optimise the use of water in crops under deficit, either by increasing yield or by reducing actual crop evapotranspiration (ET), to promote the sustainable intensification of production systems. The objective was to evaluate how the spacing, planting orientation, nitrogen fertilisation and intercropping strategies impact the dynamics of water in the soil, ET partitioning, and water use indicators for forage cactus and cactus-sorghum intercropping. Four experiments were conducted between 2018 and 2020 in the Brazilian semi-arid region. In the first two sites (I and II), the cladodes of the intercropped forage cactus and sorghum were spaced at 0.10, 0.20, 0.30, 0.40 and 0.50 m with rows-oriented east-west and north-south. In site III, the intercropped rows were spaced at 1.00, 1.25, 1.50 and 1.75 m. Site IV, which contained the forage cactus crop exclusively, was treated with four nitrogen levels (50, 150, 300 and 450 kg N ha-1). The management interventions improved water use more by increasing dry matter than by reducing ET in the cropping system. Intercropping promoted the greatest increase in water productivity (130 %). Increasing N doses in the forage cactus-only crop reduced ET by up to 39 % but increased deep drainage losses by up to 365 %. The most promising management practices for optimising water resources were as follows: spacing of 0.10 m between cactus plants in the intercropping trial under east-west row orientation, as it promoted greater water use efficiency (76 %); spacing of 0.30 m in the north-south orientation; and row spacing of 1.50 m, as it improved water productivity (6.89 kg m-3). Thus, interventions in management should be adopted to optimise water use in intercropping systems with forage cactus, aiming at sustainable intensification in dry environments.


Subject(s)
Agriculture , Sorghum , Water , Nitrogen , Zea mays , Edible Grain , Fertilization
6.
Environ Monit Assess ; 194(10): 677, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-35974211

ABSTRACT

Arid and semiarid environments are characterized by low water availability (e.g., in soil and atmosphere), high air temperature, and irregularity in the spatio-temporal distribution of rainfall. In addition to the economic and environmental consequences, drought also causes physiological damage to crops and compromises their survival in ecosystems. The removal of vegetation is responsible for altering the energy exchange of heat and water in natural ecosystems and agricultural areas. The fluxes of CO2 are also changed, and environments with characteristics of sinks, which can be sources of CO2 after anthropic disturbances. These changes can be measured through methods such as sap flow, eddy covariance, remote sensing, and energy balance. Despite the relevance of each method mentioned above, there are limitations in their applications that must be respected. Thus, this review aims to quantify the processes and changes of energy fluxes, CO2, and their interactions with the surfaces of terrestrial ecosystems in dry environments. Studies report that the use of methods that integrate data from climate monitoring towers and remote sensing products helps to improve the accuracy of the determination of energy fluxes on a global scale, also helping to reduce the dissimilarity of results obtained individually. Through the collection of works in the literature, it is reported that several areas of the Brazilian Caatinga biome, which is a Seasonally Dry Tropical Forest have been suffering from changes in land use and land cover. Similar fluxes of sensible heat in areas with cacti and Caatinga can be observed in studies. On the other hand, one of the variables influenced mainly by air temperature is net radiation. In dry forest areas, woody species can store large amounts of carbon in their biomass above and belowground. The use of cacti can modify the local carbon budget when using tree crops together. Therefore, the study highlights the complexity and severity of land degradation and changes in CO2, water, and energy fluxes in dry environments with areas of forest, grassland, and cacti. Vegetation energy balance is also a critical factor, as these simulations are helpful for use in forecasting weather or climate change. We also highlight the need for more studies that address environmental conservation techniques and cactus in the conservation of degraded areas.


Subject(s)
Carbon Dioxide , Ecosystem , Carbon , Carbon Dioxide/analysis , Environmental Monitoring , Forests , Water/metabolism
7.
J Therm Biol ; 85: 102408, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31657748

ABSTRACT

The black globe temperature (BGT) is not a common measurement for weather station networks, despite having great relevance to bioclimatic studies. The aim of this study was to propose equations for estimating the BGT, using meteorological data for different time scales and a bioclimatic evaluation of the Brazilian Northeast for breeding Saanen dairy goats. The data used in elaborating the equations were collected between 1 November 2014 and 31 October 2017. Data for BGT, incident global solar radiation (SR), air temperature (AT), relative humidity (RH) and wind speed were handled on a daytime, night-time, daily and monthly scale. One half of the database was used to adjust the equations and the other half in the evaluation. The bioclimatic diagnosis of the Brazilian Northeast was carried out based on mean monthly values of the black globe temperature and humidity index (BGHI) estimated for the four seasons of the year. For the daytime scale, an equation based on AT (BGT = 1.3897.AT-5.4421, r2 = 0.80) and a multiplicative model combining the effects of AT and SR (BGT = [1.3897.AT-5.4421] (0.0384.ln(SR)+0.7935], r2 = 0.91) were obtained. AT adjusted well for BGT on the night-time scale (BGT = 0.995.AT-0.6964, r2 = 0.99), daily scale (BGT = 1.1641.AT-1.5941, r2 = 0.97) and monthly scale (BGT = 1.1550.AT-1.3498, r2 = 0.98). The BGT can therefore be calculated from AT and/or SR for the daytime scale, and from AT only for the night-time, daily and monthly scales. In general, the west and centre-south of the state of Bahia offer the animals the most thermal comfort during each season of the year. In the state of Maranhão, heat stress occurs throughout the year, with the BGTI predominately in the range of 85-95. As such, strategies to combat heat stress should be encouraged to minimise the negative effects of climate on milk production in Saanen goats, and favour the milk-production chain in the northeast of Brazil.


Subject(s)
Goats/physiology , Weather , Animals , Brazil , Climate , Female , Heat Stress Disorders/veterinary
SELECTION OF CITATIONS
SEARCH DETAIL
...