Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(10)2024 May 09.
Article in English | MEDLINE | ID: mdl-38791221

ABSTRACT

Snakebite accidents, neglected tropical diseases per the WHO, pose a significant public health threat due to their severity and frequency. Envenomation by Bothrops genus snakes leads to severe manifestations due to proteolytic enzymes. While the antibothropic serum produced by the Butantan Institute saves lives, its efficacy is limited as it fails to neutralize certain serine proteases. Hence, developing new-generation antivenoms, like monoclonal antibodies, is crucial. This study aimed to explore the inhibitory potential of synthetic peptides homologous to the CDR3 regions of a monoclonal antibody targeting a snake venom thrombin-like enzyme (SVTLE) from B. atrox venom. Five synthetic peptides were studied, all stable against hydrolysis by venoms and serine proteases. Impressively, four peptides demonstrated uncompetitive SVTLE inhibition, with Ki values ranging from 10-6 to 10-7 M. These findings underscore the potential of short peptides homologous to CDR3 regions in blocking snake venom toxins, suggesting their promise as the basis for new-generation antivenoms. Thus, this study offers potential advancements in combatting snakebites, addressing a critical public health challenge in tropical and subtropical regions.


Subject(s)
Antibodies, Monoclonal , Bothrops , Peptides , Serine Proteases , Animals , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/pharmacology , Peptides/chemistry , Peptides/pharmacology , Serine Proteases/chemistry , Serine Proteases/metabolism , Antivenins/chemistry , Antivenins/immunology , Antivenins/pharmacology , Complementarity Determining Regions/chemistry , Crotalid Venoms/antagonists & inhibitors , Crotalid Venoms/immunology , Crotalid Venoms/enzymology , Crotalid Venoms/chemistry , Amino Acid Sequence , Serine Proteinase Inhibitors/chemistry , Serine Proteinase Inhibitors/pharmacology
2.
Toxins (Basel) ; 15(9)2023 09 20.
Article in English | MEDLINE | ID: mdl-37756010

ABSTRACT

Accidents with snakes are responsible for about 32,000 deaths annually in sub-Saharan Africa, caused mostly by snakes from the genus Bitis, in particular Bitis arietans. B. arietans venom is composed of a complex mixture of toxins, mainly metalloproteases, serine proteases, phospholipases, lectins, and disintegrins. In this work, we compared two approaches to anti-B. arietans antivenom production: immunization with crude snake venom ("traditional approach") and immunization with selected key toxins isolated from the snake venom ("toxin oriented" approach). Fractions from B. arietans venom were isolated by size exclusion chromatography. Crude venom and samples containing serine proteases or metalloproteases were selected for the immunization of BALB/c mice. Anti-B. arietans and anti-serine proteases plasmas showed a similar recognition profile and higher titers and affinity than the anti-metalloproteases plasma. Cross-recognition of other Bitis venoms was observed, but with low intensity. Although the plasma of all experimental groups inhibited the enzymatic activity of B. arietans venom in vitro, in vivo protection was not achieved. Our results have shown limitations in both approaches considered. Based on this, we proposed a model of polyclonal, species-specific, monovalent antivenoms that could be used as a base to produce customizable polyvalent sera for use in sub-Saharan Africa.


Subject(s)
Antivenins , Toxins, Biological , Animals , Mice , Antivenins/pharmacology , Snake Venoms , Serine Endopeptidases , Serine Proteases , Mice, Inbred BALB C
3.
Toxins (Basel) ; 15(4)2023 04 01.
Article in English | MEDLINE | ID: mdl-37104202

ABSTRACT

Bitis arietans is a medically important snake found in Sub-Saharan Africa. The envenomation is characterized by local and systemic effects, and the lack of antivenoms aggravates the treatment. This study aimed to identify venom toxins and develop antitoxins. The F2 fraction obtained from Bitis arietans venom (BaV) demonstrated the presence of several proteins in its composition, including metalloproteases. Titration assays carried out together with the immunization of mice demonstrated the development of anti-F2 fraction antibodies by the animals. The determination of the affinity of antibodies against different Bitis venoms was evaluated, revealing that only BaV had peptides recognized by anti-F2 fraction antibodies. In vivo analyses demonstrated the hemorrhagic capacity of the venom and the effectiveness of the antibodies in inhibiting up to 80% of the hemorrhage and 0% of the lethality caused by BaV. Together, the data indicate: (1) the prevalence of proteins that influence hemostasis and envenomation; (2) the effectiveness of antibodies in inhibiting specific activities of BaV; and (3) isolation and characterization of toxins can become crucial steps in the development of new alternative treatments. Thus, the results obtained help in understanding the envenoming mechanism and may be useful for the study of new complementary therapies.


Subject(s)
Snake Bites , Viperidae , Mice , Animals , Viperidae/metabolism , Snake Venoms/metabolism , Antivenins , Metalloproteases/metabolism , Hemorrhage , Immunoglobulin G/metabolism
4.
Article in English | MEDLINE | ID: mdl-33088285

ABSTRACT

BACKGROUND: Proteases play an important role for the proper physiological functions of the most diverse organisms. When unregulated, they are associated with several pathologies. Therefore, proteases have become potential therapeutic targets regarding the search for inhibitors. Snake venoms are complex mixtures of molecules that can feature a variety of functions, including peptidase inhibition. Considering this, the present study reports the purification and characterization of a Kunitz-type peptide present in the Dendroaspis polylepis venom as a simultaneous inhibitor of elastase-1 and cathepsin L. METHODS: The low molecular weight pool from D. polylepis venom was fractionated in reverse phase HPLC and all peaks were tested in fluorimetric assays. The selected fraction that presented inhibitory activity over both proteases was submitted to mass spectrometry analysis, and the obtained sequence was determined as a Kunitz-type serine protease inhibitor homolog dendrotoxin I. The molecular docking of the Kunitz peptide on the elastase was carried out in the program Z-DOCK, and the program RosettaDock was used to add hydrogens to the models, which were re-ranked using ZRANK program. RESULTS: The fraction containing the Kunitz molecule presented similar inhibition of both elastase-1 and cathepsin L. This Kunitz-type peptide was characterized as an uncompetitive inhibitor for elastase-1, presenting an inhibition constant (Ki) of 8 µM. The docking analysis led us to synthesize two peptides: PEP1, which was substrate for both elastase-1 and cathepsin L, and PEP2, a 30-mer cyclic peptide, which showed to be a cathepsin L competitive inhibitor, with a Ki of 1.96 µM, and an elastase-1 substrate. CONCLUSION: This work describes a Kunitz-type peptide toxin presenting inhibitory potential over serine and cysteine proteases, and this could contribute to further understand the envenomation process by D. polylepis. In addition, the PEP2 inhibits the cathepsin L activity with a low inhibition constant.

5.
Toxins (Basel) ; 12(9)2020 09 14.
Article in English | MEDLINE | ID: mdl-32937985

ABSTRACT

Bitis arietans is a snake of medical importance, as it is responsible for more accidents in humans and domestic animals than all other African snakes put together. The accidents are characterized by local and systemic alterations, such as inflammation, cardiovascular and hemostatic disturbances, which can lead victims to death or permanent disability. However, little is known about the envenomation mechanism, especially regarding the inflammatory response, which is related to severe clinical conditions triggered by the venom. Therefore, the aim of the present study was to evaluate the inflammatory response related to the B. arietans envenomation using a peritonitis mice model. By pharmacological interventions and use of mice genetically deficient of the 5-lipoxygenase enzyme (5-LO-/-) or platelet-activating factor (PAF) receptor (PAFR-/- the participation of eicosanoids and PAF in this response was also investigated. The obtained results demonstrated that the venom induces an in vivo inflammatory response, characterized by an early increased vascular permeability, followed by an accumulation of polymorphonuclear (PMN) cells in the peritoneal cavity, accompanied by the production of the eicosanoids LTB4, LTC4, TXB2 and PGE2, as well as the local and systemic production of IL-6 and MCP-1. These inflammatory events were attenuated by the pre-treatment with anti-inflammatory drugs that interfere in lipid mediators' functions. However, 5-LO-/- mice did not show a reduction of inflammatory response induced by the venom, while PAFR-/- mice showed a reduction in both the PMN leukocytes number and the local and systemic production of IL-6 and MCP-1. This study demonstrated that the Bitis arietans venom contains toxins that trigger an inflammatory process, which is partially dependent on lipid mediators, and may contribute to the envenomation pathology.


Subject(s)
Inflammation Mediators/metabolism , Leukotrienes/metabolism , Neutrophils/metabolism , Peritonitis/metabolism , Prostaglandins/metabolism , Snake Bites/metabolism , Viper Venoms/metabolism , Viperidae/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Arachidonate 5-Lipoxygenase/genetics , Arachidonate 5-Lipoxygenase/metabolism , Capillary Permeability , Disease Models, Animal , Female , Lipid Metabolism , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/drug effects , Neutrophils/immunology , Peritonitis/drug therapy , Peritonitis/immunology , Platelet Membrane Glycoproteins/genetics , Platelet Membrane Glycoproteins/metabolism , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Snake Bites/drug therapy , Snake Bites/immunology
6.
Infect Dis Poverty ; 9(1): 19, 2020 Feb 13.
Article in English | MEDLINE | ID: mdl-32051036

ABSTRACT

BACKGROUND: Mycobacterium leprae and Toxoplasma gondii infections are both neglected tropical diseases highly prevalent in Brazil. Infection with certain parasite species can significantly alter susceptibility to other important pathogens, and/or influence the development of pathology. Here we investigated the possible influence of M. leprae/T. gondii co-parasitism on the manifestation of leprosy and its clinical forms. METHODS: Participants (n = 291) were recruited in Campos dos Goytacazes city, Rio de Janeiro state, southeast Brazil, from August 2015 to December 2019 and clinically diagnosed for leprosy. Participants were selected based on the presence (patients) or absence (healthy controls) of the leprosy disease. Contacts of patients were also recruited for this study. Serum samples from patients (n = 199) with leprosy, contacts (n = 40) and healthy controls (n = 52) were investigated for levels of IgM and IgG anti-phenolic glycolipid-1 (PGL-1) by ELISA. Additionally, IgG antibody against soluble Toxoplasma antigen (STAg) was measured in sera samples from leprosy patients, contacts and healthy controls for Toxoplasma gondii serology by ELISA. Anti-PGL-1 IgG and IgM levels were compared using one-way ANOVA Kruskal-Wallis or Mann-Whitney, while Spearman test was used to correlate levels of IgG anti-STAg and IgM/IgG anti-PGL-1 from seropositive and seronegative individuals for T. gondii infection. The risk of T. gondii infection for leprosy disease was assessed using Fisher's test. RESULTS: Levels of IgM anti-PGL-1 antibodies were significantly higher in multibacillary (MB) patients compared to paucibacillary (PB) patients (P = 0.0068). Higher IgM and IgG levels anti-PGL-1 were detected in patients with the lepromatous forms. The serologic prevalence for T. gondii infection was 74.9%. We detected increased anti-STAg antibody levels in leprosy patients (79.4%), reaching 88.8% within those with lepromatous form of this disease. The leprosy risk increase in T. gondii seropositive individuals was two-fold (odds ratio [OR] = 2.055; 95% confidence intervals [95% CI]: 1.18-3.51) higher than those seronegative, and considering the lepromatous leprosy risk this increase was even dramatic (OR = 4.33; 95% CI: 1.76-9.69) in T. gondii seropositive individuals. Moreover the leprosy risk in T. gondii seropositive individuals was weakly correlated to the levels of IgG anti-STAg and IgM/IgG anti-PGL-1. CONCLUSIONS: Altogether, our results suggest that T. gondii infection may exert immunomodulatory properties that influence to the susceptibility of leprosy, mainly on its more severe clinical form. A better understanding of parasite immunomodulation can ultimately contribute to the development of medical applications.


Subject(s)
Antibodies, Bacterial/blood , Leprosy, Lepromatous/epidemiology , Mycobacterium leprae/immunology , Toxoplasma/immunology , Toxoplasmosis/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , Brazil/epidemiology , Case-Control Studies , Child , Comorbidity , Enzyme-Linked Immunosorbent Assay , Female , Glycolipids/immunology , Humans , Immunoglobulin G/immunology , Immunoglobulin M/immunology , Male , Middle Aged , Seroepidemiologic Studies , Young Adult
7.
Article in English | MEDLINE | ID: mdl-31341494

ABSTRACT

Cervical cancer (CC) is classified as the fourth most common type of cancer in women worldwide and remains a serious public health problem in many underdeveloped countries. Human papillomavirus (HPV), mainly types 16 and 18, has been established as a precursory etiologic agent for this type of cancer. Several therapeutic attempts have been studied and applied, aiming at its control. However, not only do classical treatments such as chemotherapies and radiotherapies target tumor cells, but also they cause damage to several healthy cells. For these reasons, the search for new biologically active chemotherapeutic components is of great importance. In this study, we investigated the effect of Tityus serrulatus scorpion venom (TsV) on CC lines. There are very few studies exploring venom of scorpions, and, to our knowledge, no study has been conducted using the venom of the scorpion TsV for treatment of cervical cancer lines. After challenge with TsV, the MTT assay demonstrated cytotoxic effect on HeLa line. Similarly, the cell death process in HeLa analyzed by flow cytometry suggests death via caspase, since the pan-caspase inhibitor z-VAD-fmk significantly reduced the apoptotic response to the treatment. These results suggest that venom of TsV can be a potential source for the isolation of effective antiproliferative and apoptotic molecules in the treatment of CC.

8.
Article in English | MEDLINE | ID: mdl-30564275

ABSTRACT

BACKGROUND: Bitis arietans is a venomous snake found in sub-Saharan Africa and in parts of Morocco and Saudi Arabia. The envenomation is characterized by local and systemic reactions including pain, blistering, edema and tissue damage, besides hemostatic and cardiovascular disturbances, which can cause death or permanent disabilities in its victims. However, the action mechanisms that provoke these effects remain poorly understood, especially the activities of purified venom components. Therefore, in order to elucidate the molecular mechanisms that make the Bitis arietans venom so potent and harmful to human beings, this study reports the isolation and biochemical characterization of a snake venom serine protease (SVSP). METHODS: Solubilized venom was fractionated by molecular exclusion chromatography and the proteolytic activity was determined using fluorescent substrates. The peaks that showed serine protease activity were determined by blocking the proteolytic activity with site-directed inhibitors. In sequence, the fraction of interest was submitted to another cycle of molecular exclusion chromatography. The purified serine protease was identified by mass spectrometry and characterized biochemically and immunochemically. RESULTS: A serine protease of 33 kDa with fibrinogen-degrading and kinin-releasing activities was isolated, described, and designated herein as Kn-Ba. The experimental Butantan Institute antivenom produced against Bitis arietans venom inhibited the Kn-Ba activity. CONCLUSIONS: The in vitro activities of Kn-Ba can be correlated with the capacity of the venom to provoke bleeding and clotting disorders as well as hypotension, which are common symptoms presented by envenomed victims. Obtaining satisfactory Kn-Ba inhibition through the experimental antivenom is important, given the WHO's recommendation of immunotherapy in cases of human accidents with venomous snakes.

9.
Pathog Dis ; 76(6)2018 08 01.
Article in English | MEDLINE | ID: mdl-30053011

ABSTRACT

Paratuberculosis (PTB) or Johne's disease is a chronic intestinal infection of ruminants, caused by Mycobacterium avium subsp. paratuberculosis. The shedding of mycobacteria in the feces starts at the initial stages and increases with disease progression, suggesting that antigens secreted by mycobacteria could be excreted in the feces. Previously, we demonstrated that the alanine and proline-rich antigen (Apa), a secretory antigen of Map, could be detected in the intestine of cows with PTB using a monoclonal antibody. In this study, we verified whether this protein can be found in consistently detectable levels in the feces of cattle with PTB. Feces were obtained from cows with Johne's disease confirmed by laboratory tests, cows with suspected PTB based on seropositivity and from PTB-free control cows. Samples were immunoprecipitated using anti-Apa monoclonal antibody and analyzed by immunoblot. The Apa was detected as a 60/70 kDa doublet band in all samples obtained from animals with laboratory-confirmed disease and in a substantial proportion of seropositive asymptomatic animals, but not in the control samples. Additionally, the antigen was detected in the feces of animals with Johne's disease by ELISA. This study strongly suggests that Apa is a potential fecal biomarker of Johne's disease that could serve for immunodiagnosis.


Subject(s)
Antigens, Bacterial/analysis , Bacterial Proteins/analysis , Biomarkers/analysis , Cattle Diseases/diagnosis , Feces/chemistry , Mycobacterium avium subsp. paratuberculosis/chemistry , Paratuberculosis/diagnosis , Animals , Cattle , Cattle Diseases/pathology , Enzyme-Linked Immunosorbent Assay , Feces/microbiology , Immunoblotting , Paratuberculosis/pathology
10.
Data Brief ; 13: 717-722, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28748206

ABSTRACT

The data presented in this article are related to the research article entitled "Development of IgY antibodies against anti-snake toxins endowed with highly lethal neutralizing activity" (da Rocha et al., 2017) [1]. Complementarity-determining region (CDR) sequences are variable antibody (Ab) sequences that respond with specificity, duration and strength to identify and bind to antigen (Ag) epitopes. B lymphocytes isolated from hens immunized with Bitis arietans (Ba) and anti-Crotalus durissus terrificus (Cdt) venoms and expressing high specificity, affinity and toxicity neutralizing antibody titers were used as DNA sources. The VLF1, CDR1, CDR2, VLR1 and CDR3 sequences were validated by BLASTp, and values corresponding to IgY VL and VH anti-Ba or anti-Cdt venoms were identified, registered [Gallus gallus IgY Fv Light chain (GU815099)/Gallus gallus IgY Fv Heavy chain (GU815098)] and used for molecular modeling of IgY scFv anti-Ba. The resulting CDR1, CDR2 and CDR3 sequences were combined to construct the three - dimensional structure of the Ab paratope.

11.
Eur J Pharm Sci ; 106: 404-412, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28595875

ABSTRACT

Snakebite envenoming is a major neglected disease related to poverty in developing countries. Treatment involves the administration of a specific antivenom serum and auxiliary therapies, if necessary. The improvement of antibodies is of great importance for the technological advancement of antivenom therapy and to reduce the morbidity and mortality associated with this medical burden. In the present study, adult hens were immunized nine times with 20µg of B. arietans or C. d. terrificus venoms at three-week intervals between immunizations. Developing antibodies presented increasing avidity and affinity to antigenic toxin epitopes along immunization, attaining a plateau after the seventh immunization. Pooled egg yolk-purified IgY antivenom antibodies, subjected to in vitro-in vivo lethality assay using Swiss adult mice, exhibited potent venom lethal neutralizing activity. Taken together, chickens under the described immunization schedule were considered alternative candidates for antivenom production. Lower maintenance costs, a simple antibody manufacturing process and immunization suffering restrictions are additional advantages.


Subject(s)
Antitoxins/immunology , Crotalid Venoms/immunology , Immunoglobulins/immunology , Animals , Bothrops , Chickens , Crotalus , Female , Mice
12.
PLoS Negl Trop Dis ; 10(1): e0004325, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26730709

ABSTRACT

BACKGROUND: Snake envenoming is a significant public health problem in underdeveloped and developing countries. In sub-Saharan Africa, it is estimated that 90,000-400,000 envenomations occur each year, resulting in 3,500-32,000 deaths. Envenomings are caused by snakes from the Viperidae (Bitis spp. and Echis spp.) and Elapidae (Naja spp. and Dendroaspis spp.) families. The African continent has been suffering from a severe antivenom crisis and current antivenom production is only sufficient to treat 25% of snakebite cases. Our aim is to develop high-quality antivenoms against the main snake species found in Mozambique. METHODS: Adult horses primed with the indicated venoms were divided into 5 groups (B. arietans; B. nasicornis + B. rhinoceros; N. melanoleuca; N. mossambica; N. annulifera + D. polylepis + D. angusticeps) and reimmunized two times for antivenom production. Blood was collected, and plasma was separated and subjected to antibody purification using caprylic acid. Plasmas and antivenoms were subject to titration, affinity determination, cross-recognition assays and in vivo venom lethality neutralization. A commercial anti-Crotalic antivenom was used for comparison. RESULTS: The purified antivenoms exhibited high titers against B. arietans, B. nasicornis and B. rhinoceros (5.18 x 106, 3.60 x 106 and 3.50 x 106 U-E/mL, respectively) and N. melanoleuca, N. mossambica and N. annulifera (7.41 x 106, 3.07 x 106 and 2.60 x 106 U-E/mL, respectively), but lower titers against the D. angusticeps and D. polylepis (1.87 x 106 and 1.67 x 106 U-E/mL). All the groups, except anti-N. melanoleuca, showed significant differences from the anti-Crotalic antivenom (7.55 x 106 U-E/mL). The affinity index of all the groups was high, ranging from 31% to 45%. Cross-recognition assays showed the recognition of proteins with similar molecular weight in the venoms and may indicate the possibility of paraspecific neutralization. The three monospecific antivenoms were able to provide in vivo protection. CONCLUSION: Our results indicate that the anti-Bitis and anti-Naja antivenoms developed would be useful for treating snakebite envenomations in Mozambique, although their effectiveness should to be increased. We propose instead the development of monospecific antivenoms, which would serve as the basis for two polyvalent antivenoms, the anti-Bitis and anti-Elapidae. Polyvalent antivenoms represent an increase in treatment quality, as they have a wider range of application and are easier to distribute and administer to snake envenoming victims.


Subject(s)
Antivenins/immunology , Horses/immunology , Immunoglobulin G/immunology , Snake Venoms/immunology , Snakes/classification , Animals , Antivenins/classification , Mozambique , Snake Venoms/classification
13.
Article in English | MEDLINE | ID: mdl-28050190

ABSTRACT

Bothrops jararaca (BJ) and Bothrops erythromelas (BE) are viper snakes found in South-Southeast and Northeast regions of Brazil, respectively. Snake venoms are bioactive neurotoxic substances synthesized and stored by venom glands, with different physiological and pharmacological effects, recently suggesting a possible preference for targets in cancer cells; however, mechanisms of snakes have been little studied. Here, we investigated the mechanism responsible for snake crude venoms toxicity in cultured cervical cancer cells SiHa and HeLa. We show that BJ and BE snake crude venoms exert cytotoxic effects to these cells. The percentage of apoptotic cells and cell cycle analysis and cell proliferation were assessed by flow cytometry and MTT assay. Detection of mitochondrial membrane potential (Rhodamine-123), nuclei morphological change, and DNA fragmentation were examined by staining with DAPI. The results showed that both the BJ and BE venoms were capable of inhibiting tumor cell proliferation, promoting cytotoxicity and death by apoptosis of target SiHa and HeLa cells when treated with BJ and BE venoms. Furthermore, data revealed that both BJ venoms in SiHa cell promoted nuclear condensation, fragmentation, and formation of apoptotic bodies by DAPI assay, mitochondrial damage by Rhodamine-123, and cell cycle block in the G1-G0 phase. BJ and BE venoms present anticancer potential, suggesting that both Bothrops venoms could be used as prototypes for the development of new therapies.

14.
PLoS Negl Trop Dis ; 9(2): e0003419, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25643358

ABSTRACT

BACKGROUND: An alarming number of fatal accidents involving snakes are annually reported in Africa and most of the victims suffer from permanent local tissue damage and chronic disabilities. Envenomation by snakes belonging to the genus Bitis, Viperidae family, are common in Sub-Saharan Africa. The accidents are severe and the victims often have a poor prognosis due to the lack of effective specific therapies. In this study we have biochemically characterized venoms from three different species of Bitis, i.e., Bitis arietans, Bitis gabonica rhinoceros and Bitis nasicornis, involved in the majority of the human accidents in Africa, and analyzed the in vitro neutralizing ability of two experimental antivenoms. METHODOLOGY/PRINCIPAL FINDINGS: The data indicate that all venoms presented phospholipase, hyaluronidase and fibrinogenolytic activities and cleaved efficiently the FRET substrate Abz-RPPGFSPFRQ-EDDnp and angiotensin I, generating angiotensin 1-7. Gelatinolytic activity was only observed in the venoms of B. arietans and B. nasicornis. The treatment of the venoms with protease inhibitors indicated that Bitis venoms possess metallo and serinoproteases enzymes, which may be involved in the different biological activities here evaluated. Experimental antivenoms produced against B. arietans venom or Bitis g. rhinoceros plus B. nasicornis venoms cross-reacted with the venoms from the three species and blocked, in different degrees, all the enzymatic activities in which they were tested. CONCLUSION: These results suggest that the venoms of the three Bitis species, involved in accidents with humans in the Sub-Saharan Africa, contain a mixture of various enzymes that may act in the generation and development of some of the clinical manifestations of the envenomations. We also demonstrated that horse antivenoms produced against B. arietans or B. g. rhinoceros plus B. nasicornis venoms can blocked some of the toxic activities of these venoms.


Subject(s)
Antivenins/metabolism , Protease Inhibitors/metabolism , Viper Venoms/enzymology , Africa South of the Sahara , Animals , Antivenins/therapeutic use , Cross Reactions , Horses , Humans , Viper Venoms/antagonists & inhibitors , Viper Venoms/metabolism , Viperidae/metabolism
15.
Inflamm Allergy Drug Targets ; 10(5): 343-57, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21824082

ABSTRACT

This review summarizes the key contributions to our knowledge regarding the immune response induced by snake venom toxins, focusing particularly on the production of antibodies and their venom-neutralizing effects. We cover the past and present state of the art of anti-snake venom production, followed by an overview of the venomous snakes and their venoms. The toxic properties of relevant snake venom toxins are approached in some details, with particular emphasis on the molecular domains responsible for binding to cells or plasma components in victims. The interactions of these domains are also reviewed, particularly the putatively relevant epitopes, along with the immune system and the resulting antibodies. We also review trials aimed at reducing the quantities of non-relevant antibodies in the antivenoms by substituting whole venoms with purified toxins to immunize animals, or the immunogenicity of the heterologous antivenom antibodies by humanizing their molecules.


Subject(s)
Antibodies, Blocking/therapeutic use , Antivenins/therapeutic use , Snake Bites/therapy , Snake Venoms/immunology , Toxins, Biological/immunology , Animals , Antibodies, Blocking/metabolism , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/metabolism , Antivenins/metabolism , Clinical Trials as Topic , Epitopes/metabolism , Humans , Immunity, Humoral , Protein Binding , Protein Structure, Tertiary/genetics , Snake Bites/immunology , Snake Venoms/classification , Snake Venoms/metabolism , Snakes , Toxins, Biological/classification , Toxins, Biological/metabolism
16.
PLoS One ; 6(6): e21673, 2011.
Article in English | MEDLINE | ID: mdl-21738761

ABSTRACT

BACKGROUND: Opportunistic Mycobacterium avium typically causes disease in immunocompromised patients and in some groups of apparently healthy individuals. The high virulence of some bacterial lineages increases the disease risk. High-resolution molecular genotyping studies of M. avium clinical isolates demonstrated that some genotype patterns were more prevalent than others, suggesting that close genetic relatedness of these successful isolates sharing a similar genotype could determine similar biological properties associated with high virulence. METHODS AND FINDINGS: In this study, we aimed to compare the virulence and pathogenic properties of two epidemiologically unrelated M. avium isolates sharing an indistinguishable DNA fingerprint in a well-characterized model of pulmonary infection in mice, resistant or susceptible to mycobacteria. The mice, C57BL/6 wild- type or IFN-gamma gene disrupted (GKO), respectively, were intratracheally infected with two isolates, H27 (human blood isolate) and P104 (pig lymph node isolate), and the lungs were examined for bacterial loads, histopathology and cytokine gene expression. The obtained data demonstrated significant differences in the virulence properties of these strains. Although the H27 strain grew significantly faster than P104 in the early stage of infection, this bacterium induced protective immunity that started to reduce bacterial numbers in the wild-type mice, whereas the P104 strain established a chronic infection. In the GKO mice, both strains were capable of causing a chronic infection, associated with higher bacterial burdens and severe lung pathology, in a similar manner. CONCLUSIONS/SIGNIFICANCE: The results demonstrated that the studied isolates differed in the pathogenic properties although were indistinguishable by actually widely used genotyping techniques demonstrating that the genotype similarity does not predict similarity in virulence of M. avium isolates.


Subject(s)
DNA Fingerprinting/methods , DNA, Bacterial/genetics , Lung Diseases/microbiology , Mycobacterium avium/genetics , Mycobacterium avium/pathogenicity , Animals , Cells, Cultured , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Polymerase Chain Reaction , Virulence/genetics , Virulence/physiology
18.
Toxicon ; 55(2-3): 536-40, 2010.
Article in English | MEDLINE | ID: mdl-19857507

ABSTRACT

A murine model of venom-induced myotoxicity was used to assess the antimyotoxic capacity of a polyvalent antivenom (PAV), rich in F(ab')2 fragments, obtained from horses immunized with Bitis venoms. Intramuscular (i.m.) injection of Bitis rhinoceros, Bitis arietans or Bitis nasicornis into mice induced a time- and dose-dependent increase in plasma CK activity. The area under the plasma CK activity vs. time curve (AUC) between 0 and 48 h was used to quantify the data. Pre-incubation with PAV neutralized the venoms' myotoxicity, in a concentration-dependent manner: 80-100% neutralization occurred when the ratio of the PAV volume to the venom mass was 3-fold that recommended for use in human envenomation. Intravenous administration of PAV 1 h before the i.m. venom injection, afforded significant protection against myotoxicity, especially in the case of B. arietans. An antimyotoxic effect was also observed, albeit reduced, when the PAV treatment was applied 1 h after the venom injection. These data indicate that a PAV developed and manufactured in Brazil protects against the myotoxicity of the venoms of B. rhinoceros, B. arietans or B. nasicornis, which account for a large number of snakebite accidents in the African continent.


Subject(s)
Antivenins/pharmacology , Muscle, Skeletal/pathology , Muscular Diseases/pathology , Muscular Diseases/prevention & control , Viper Venoms/antagonists & inhibitors , Viper Venoms/toxicity , Viperidae/physiology , Africa , Animals , Area Under Curve , Creatine Kinase/blood , Injections, Intramuscular , Lethal Dose 50 , Male , Mice , Mice, Inbred BALB C , Species Specificity
19.
Toxicon ; 52(2): 293-301, 2008 Aug 01.
Article in English | MEDLINE | ID: mdl-18621073

ABSTRACT

Polyvalent anti-Bitis and anti-Naja antivenom IgY antibodies were prepared using B. arietans, B. nasicornis, B. rhinoceros, N. melanoleuca, and N. mossambica venoms to immunize chickens. Blood and eggs were collected before and during the 10-month immunization period; the sera and yolk extracts were then prepared and assayed for the presence of antivenom antibodies by ELISA and Western blot methods. ELISA Antivenom antibody titers, referred to as U-ELISA/ml of serum or egg yolk extracts, absent in pre-immunization sera or yolk, increased sharply during the 4 weeks after immunization, reaching a plateau thereafter. Yolk extracts with high antivenom titers, as detected by ELISA were used to isolate and purify IgY. Purified IgY preparations recognized venom protein bands from 10 to 20 kDa to 60 and 70 kDa, as shown by Western blot. Recovery of antivenom antibodies from the whole yolk was over 80%. Final preparations exhibited high antivenom activity (>100,000 U-ELISA/ml) as well as efficacy in neutralizing venom lethality (1,440 microg of IgY neutralize 62.2 LD(50) of venom), and were free of toxic products, pyrogen or bacterial and fungal contaminations.


Subject(s)
Antivenins/immunology , Elapid Venoms/immunology , Elapidae , Immunoglobulins/immunology , Animals , Animals, Outbred Strains , Antibodies/immunology , Chickens/immunology , Egg Yolk/immunology , Elapid Venoms/chemistry , Enzyme-Linked Immunosorbent Assay , Female , Lethal Dose 50 , Mice , Neutralization Tests , Rabbits
20.
Mol Immunol ; 40(16): 1149-56, 2004 Mar.
Article in English | MEDLINE | ID: mdl-15104120

ABSTRACT

Low molecular weight hemorrhagins were purified from crude Bothrops atrox snake venom by gel filtration followed by ionic strength chromatography. The protein fractions obtained, designated HI-1 to HI-8, contained proteins with molecular masses lower than 30 kDa. HI-5, the most representative among of these fractions, exhibited, in vitro, proteolytic and C inactivating properties, as analyzed by proteolysis of a protein substrate, and C system consumptive activities as assayed by reduction of the hemolytic C activity in normal human serum and by cleavage of partially purified component C3. HI-5 hemorrhagin injected i.m. into C-sufficient BALB/c mice induced a local inflammation characterized by edema, accumulation of polymorphonuclear leucocytes (PMN) and hemorrhage. In contrast, when injected into BALB/c mice previously C-depleted, the number of PMN per tissue section, but not hemorrhage, was significantly reduced (129.668 +/- 31.341 cells per microscopic field) as compared with the control C-sufficient mice (812.168 +/- 111.194 cells per microscopic field). The observations were confirmed by using C5-deficient mice instead of C-depleted mice. The average number of PMN per tissue section in C5-defficient A/J mice was 72.666 +/- 19.416 cells per microscopic field. These data indicate that the C system is involved in PMN accumulation, but not in the hemorrhage, at the local induced lesions by low molecular mass B. atrox hemorrhagins. HI-5 apparently is not contaminated with other direct or indirect inflammation mediators, PMN accumulation and hemorrhage, however, an independent phenomenon, could be mediated by the same hemorrhagin proteinase domain.


Subject(s)
Bothrops , Complement System Proteins/physiology , Crotalid Venoms/enzymology , Inflammation/chemically induced , Metalloendopeptidases/toxicity , Neutrophils/metabolism , Animals , Complement C5/immunology , Complement Hemolytic Activity Assay , Complement System Proteins/deficiency , Crotalid Venoms/toxicity , Edema/chemically induced , Hemorrhage/chemically induced , Humans , Inflammation/pathology , Injections, Intramuscular , Metalloendopeptidases/isolation & purification , Mice , Mice, Inbred A , Mice, Inbred BALB C , Molecular Weight , Muscle, Skeletal/pathology , Neutrophils/drug effects , Neutrophils/pathology , Serum/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...