Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Top Med Chem ; 19(9): 683-689, 2019.
Article in English | MEDLINE | ID: mdl-30836914

ABSTRACT

Background and Introduction: Mefloquine, a drug used to prevent and treat malaria is described possessing activity against the Mycobacterium tuberculosis (Mtb) as well as against multidrugresistant tuberculosis (MDR) and other types of bacteria. Despite their importance, few compounds based on the Mefloquine nucleus have been synthesized and evaluated against TB. MATERIALS AND METHODS: For the synthesis of all the compounds based on the Mefloquine nucleus we used a synthetic route which utilized the key derivative 4-methoxy-2,8-bis(trifluoromethyl)quinoline 2 as starting material. The compounds 3 (a-c), 4 (a-b) were synthesized after one step by reaction of 2 with appropriate amines substituted. The chloro derivatives 5 and 6 were obtained from compounds 4b and 4a by treatment with SOCl2 in CH2Cl2 at reflux in 75 and 80% yield, respectively. The analogue 6 was converted to 7 after treatment with ethanolamine under heating at 90oC in 64% yield and to the azido derivative 8 in 56% after reaction with sodium azide in MeOH at reflux for 2 h. The analogue 9 was obtained after reaction of 5 with ethanolamine at 90oC for 1 h in 90% yield. All the new compounds were identified by detailed spectral data, including 1H NMR, 13C NMR and high resolution mass spectra. All the compound were evaluated for their in vitro antibacterial activity against sensitive Mycobacterium tuberculosis ATCC 27294, using the microplate Alamar Blue assay (MABA). The more active compounds 3c, 7, and 9 were also evaluated against resistant strain SR 2571/0215 (resistant to Rifampicin and Isoniazid) by above method. All compounds were tested against three cancer cell lines: SF-295 (glioblastoma), HCT-116 (colon) and PC-3 (prostate) using the MTT assay. RESULTS: All the planned ten compounds were synthetically obtained in good global yield, displaying activity against sensitive Mycobacterium tuberculosis in vitro, with exception of one, with MIC values between 37.2 and 154.8 µM. The compounds 3c (37.2 µM), 7 (68.1 µM) and 9 (65.6 µM) showed the highest activity in this series with MIC values similar when compare to the standard Mefloquine (30 - 60 µM), being 3c the most potent. The more active compounds 3c, 7, and 9 were also evaluated against resistant strain, displaying MIC of 37.2, 136.2 and 65.6 µM, respectively. All compounds were tested against three cancer cell lines and showed low cytotoxicity. CONCLUSION: All synthesized compounds, with the exception of 5, exhibited activity against the Mtb. Compound 3c was the most potent against resistant and sensitive Mtb in this series, with MIC value of 37.2 µM. All compounds showed low cytotoxicity. These findings could be considered a good model to develop possible lead compounds in the fight against TB based on Mefloquine nucleus.


Subject(s)
Antitubercular Agents/pharmacology , Drug Resistance, Bacterial/drug effects , Mefloquine/pharmacology , Mycobacterium tuberculosis/drug effects , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Mefloquine/chemical synthesis , Mefloquine/chemistry , Microbial Sensitivity Tests , Molecular Structure
2.
Int J Parasitol Drugs Drug Resist ; 8(2): 331-340, 2018 08.
Article in English | MEDLINE | ID: mdl-29933218

ABSTRACT

The cestode E. multilocularis causes the disease alveolar echinococcosis (AE) in humans. The continuously proliferating metacestode (larval stage) of the parasite infects mostly the liver and exhibits tumor-like growth. Current chemotherapeutical treatment options rely on benzimidazoles, which are rarely curative and have to be applied daily and life-long. This can result in considerable hepatotoxicity and thus treatment discontinuation. Therefore, novel drugs against AE are urgently needed. The anti-malarial mefloquine was previously shown to be active against E. multilocularis metacestodes in vitro, and in mice infected by intraperitoneal inoculation of metacestodes when administered at 100 mg/kg by oral gavage twice a week for 12 weeks. In the present study, the same dosage regime was applied in mice infected via oral uptake of eggs representing the natural route of infection. After 12 weeks of treatment, the presence of parasite lesions was assessed in a liver squeeze chamber and by PCR, and a significantly reduced parasite load was found in mefloquine-treated animals. Assessment of mefloquine plasma concentrations by HPLC and modeling using a two-compartment pharmacokinetic model with first-order absorption showed that >90% of the expected steady-state levels (Cmin 1.15 mg/L, Cmax 2.63 mg/L) were reached. These levels are close to concentrations achieved in humans during long-term weekly dosage of 250 mg (dose applied for malaria prophylaxis). In vitro structure-activity relationship analysis of mefloquine and ten derivatives revealed that none of the derivatives exhibited stronger activities than mefloquine. Activity was only observed, when the 2-piperidylmethanol group of mefloquine was replaced by an amino group-containing residue and when the trifluoromethyl residue on position 8 of the quinoline structure was present. This is in line with the anti-malarial activity of mefloquine and it implies that the mode of action in E. multilocularis might be similar to the one against malaria.


Subject(s)
Echinococcosis/drug therapy , Echinococcus multilocularis/drug effects , Liver/drug effects , Mefloquine/pharmacokinetics , Mefloquine/therapeutic use , Animals , Antimalarials/administration & dosage , Benzimidazoles/therapeutic use , Disease Models, Animal , Drug Repositioning , Echinococcosis/parasitology , Echinococcus multilocularis/genetics , Humans , Liver/parasitology , Mefloquine/analogs & derivatives , Mefloquine/blood , Mice , Parasite Load , Structure-Activity Relationship
3.
Sci Pharm ; 84(3): 467-483, 2015 Oct 18.
Article in English | MEDLINE | ID: mdl-28117313

ABSTRACT

Both sonochemical and classical methodologies have been employed to convert camphor, 1,7,7-trimethylbicyclo[2.2.1]heptan-2-one, C9H16C=O, into a number of derivatives including hydrazones, C9H16C=N-NHAr 3, imines, C9H16C=N-R 7, and the key intermediate nitroimine, C9H16C=N-NO2 6. Reactions of nitroamine 6 with nucleophiles by classical methods provided the desired compounds in a range of yields. In evaluations of activity against Mycobacterium tuberculosis, compound 7j exhibited the best activity (minimal inhibitory concentration (MIC) = 3.12 µg/mL), comparable to that of the antitubercular drug ethambutol. The other derivatives displayed modest antimycobacterial activities at 25-50 µg/mL. In in vitro tests against cancer cell lines, none of the synthesized camphor compounds exhibited cytotoxic activities.

SELECTION OF CITATIONS
SEARCH DETAIL
...