Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nutr ; 57(2): 817-832, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28105508

ABSTRACT

PURPOSE: Euterpe oleracea Mart. (açaí) seed extract (ASE), through its anti-hypertensive, antioxidant and anti-inflammatory properties, may be useful to treat or prevent human diseases. Several evidences suggest that oxidative stress and inflammation contribute to the pathogenesis of diabetic nephropathy; therefore, we tested the hypothesis that ASE (200 mg/kg-1day-1) prevents diabetes and hypertension-related oxidative stress and inflammation, attenuating renal injury. METHODS: Male rats with streptozotocin (STZ)-induced diabetes (D), and spontaneously hypertensive rats with STZ-induced diabetes (DH) were treated daily with tap water or ASE (D + ASE and DH + ASE, respectively) for 45 days. The control (C) and hypertensive (H) animals received water. RESULTS: The elevated serum levels of urea and creatinine in D and DH, and increased albumin excretion in HD were reduced by ASE. Total glomeruli number in D and DH, were increased by ASE that also reduced renal fibrosis in both groups by decreasing collagen IV and TGF-ß1 expression. ASE improved biomarkers of renal filtration barrier (podocin and nephrin) in D and DH groups and prevented the increased expression of caspase-3, IL-6, TNF-α and MCP-1 in both groups. ASE reduced oxidative damage markers (TBARS, carbonyl levels and 8-isoprostane) in D and DH associated with a decrease in Nox 4 and p47 subunit expression and increase in antioxidant enzyme activity in both groups (SOD, catalase and GPx). CONCLUSION: ASE substantially reduced renal injury and prevented renal dysfunction by reducing inflammation, oxidative stress and improving the renal filtration barrier, providing a nutritional resource for prevention of diabetic and hypertensive-related nephropathy.


Subject(s)
Antioxidants/therapeutic use , Diabetic Nephropathies/prevention & control , Dietary Supplements , Euterpe/chemistry , Plant Extracts/therapeutic use , Renal Insufficiency/prevention & control , Seeds/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Antihypertensive Agents/therapeutic use , Apoptosis , Biomarkers/blood , Biomarkers/metabolism , Biomarkers/urine , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/diet therapy , Diabetes Mellitus, Experimental/immunology , Diabetic Nephropathies/complications , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Fibrosis , Glomerular Filtration Barrier/immunology , Glomerular Filtration Barrier/metabolism , Glomerular Filtration Barrier/pathology , Glomerular Filtration Barrier/physiopathology , Hypertension/complications , Hypertension/diet therapy , Hypertension/immunology , Hypertension/physiopathology , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Kidney/immunology , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Oxidative Stress , Rats, Inbred SHR , Renal Insufficiency/complications , Renal Insufficiency/etiology , Renal Insufficiency/metabolism
2.
J Nutr Biochem ; 52: 70-81, 2018 02.
Article in English | MEDLINE | ID: mdl-29175669

ABSTRACT

Type 2 diabetes mellitus contributes to an increased risk of metabolic and morphological changes in key organs, such as the liver. We aimed to assess the effect of the açaí seed extract (ASE) associated with exercise training on hepatic steatosis induced by high-fat (HF) diet plus streptozotocin (STZ) in rats. Type 2 diabetes was induced by feeding rats with HF diet (55% fat) for 5 weeks, followed by a single low dose of STZ (35 mg/kg i.p.). Control and diabetic groups were subdivided into four groups that were fed with standard chow diet for 4 weeks. Control (C) group was subdivided into Sedentary C, Training C, ASE Sedentary C and ASE Training C. Diabetic (D) group was subdivided into Sedentary D, Training D, ASE Sedentary D and ASE Training D. ASE (200 mg/kg/day) was administered by intragastric gavage, and the exercise training was performed on a treadmill (30 min/day; 5 days/week). Treatment with ASE associated with exercise training reduced the blood glucose (70.2%), total cholesterol (81.2%), aspartate aminotransferase (51.7%) and hepatic triglyceride levels (66.8%) and steatosis (72%) in ASE Training D group compared with the Sedentary D group. ASE associated with exercise training reduced the hepatic lipogenic proteins' expression (77.3%) and increased the antioxidant defense (63.1%), pAMPK expression (70.2%), cholesterol transporters (71.1%) and the pLKB1/LKB1 ratio (57.1%) in type 2 diabetic rats. In conclusion, ASE treatment associated with exercise training protects against hepatic steatosis in diabetic rats by reducing hepatic lipogenesis and increasing antioxidant defense and cholesterol excretion.


Subject(s)
Diabetes Mellitus, Type 2/complications , Euterpe/chemistry , Non-alcoholic Fatty Liver Disease/diet therapy , Physical Conditioning, Animal , Plant Extracts/pharmacology , Animals , Antioxidants/metabolism , Diabetes Mellitus, Experimental/complications , Enzymes/metabolism , Glycogen/metabolism , Lipid Metabolism/drug effects , Liver/drug effects , Liver/metabolism , Male , Non-alcoholic Fatty Liver Disease/etiology , Protein Carbonylation , Proteins/metabolism , Rats, Wistar , Seeds/chemistry
3.
J Cardiovasc Pharmacol ; 58(3): 319-28, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21697730

ABSTRACT

This study examined the effect of Vitis vinifera grape skin ACH09 extract (ACH09) on metabolic disorders and oxidative stress in adult offspring of rats fed a high-fat diet (HF) during lactation. Four groups of female rats were fed: control diet (7% fat); ACH09 (7% fat + 200 mg·kg·d ACH09 orally); HF (24% fat); HF+ ACH09 (24% fat + 200 mg·kg·d ACH09 orally) during lactation. From weaning onward, all female offspring were fed a control diet and killed when they were 90 or 180 days old. Systolic blood pressure was increased in adult offspring of HF-fed dams, and ACH09 prevented hypertension. Increased adiposity, plasma triglyceride, glucose levels, and insulin resistance were observed in offspring from both ages, and these changes were reversed by ACH09. The plasma oxidative damage assessed by malondialdehyde levels was increased, and nitrite levels decreased in the HF group of both ages, which were reversed by ACH09. In addition, ACH09 restored the decreased plasma and mesenteric artery antioxidant activities of superoxide dismutase, catalase, and glutathione peroxidase in the HF group. In conclusion, ACH09 protected normally fed offspring of HF-fed dams during lactation from phenotypic and metabolic characteristics of metabolic syndrome providing an alternative nutritional resource for the prevention of metabolic syndrome.


Subject(s)
Antioxidants/pharmacology , Metabolic Diseases/prevention & control , Metabolic Syndrome/prevention & control , Oxidative Stress , Phytotherapy , Plant Extracts/pharmacology , Vitis , Animals , Antioxidants/analysis , Blood Pressure , Body Weight , Diet, High-Fat , Disease Models, Animal , Drug Evaluation, Preclinical , Female , Fruit , Insulin Resistance , Lactation , Lipid Peroxidation , Lipids/blood , Male , Metabolic Syndrome/physiopathology , Plant Extracts/analysis , Pregnancy , Rats , Rats, Wistar , Vasodilation
SELECTION OF CITATIONS
SEARCH DETAIL
...