Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-37275573

ABSTRACT

B. dracunculifolia is popularly used to treat skin diseases. This work aimed to evaluate the topical anti-inflammatory properties of B. dracunculifolia root extract (BdR) and its major compound baccharis oxide (BOx) on mice ear edema models. BdR was analyzed by GC-MS, and BOx was isolated by chromatographic fractionation. Topical anti-inflammatory activities were determined by using the croton oil, capsaicin, histamine, and phenol-induced mouse ear edema models. N-acetyl-ß-D- glucosaminidase (NAG) and myeloperoxidase (MPO) activities, as well as NO dosage and histopathological analyses, were also evaluated. Phytochemical analysis of BdR showed BOx as one of the major constituents. BdR and BOx (both at 0.1, 0.5, and 1.0 mg/ear) significantly reduced croton oil, histamine, and phenol-induced ear edema, while only BOx was effective in reducing capsaicin-induced edema. MPO and NAG activities, as well as NO production, were significantly inhibited by BdR and BOx. Histopathological analysis confirmed the topical anti-inflammatory properties of BdR and BOx. Our findings showed that BdR and BOx demonstrated significant topical anti-inflammatory effects in mouse ear edema induced by different agents, suggesting their possible application on skin inflammatory diseases.

2.
J Ethnopharmacol ; 313: 116607, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37149066

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Roots of Pothomorphe umbellata (L.) Miq. are used in traditional medicine of Africa and South America for the treatment of malaria and helminthiasis. However, neither P. umbellata nor its isolated compounds have been evaluated against Schistosoma species. AIMS OF THIS STUDY: To investigate the antischistosomal effects of P. umbellata root extracts and the isolated compound 4-nerolidylcatechol (4-NC) against Schistosoma mansoni ex vivo and in murine models of schistosomiasis. MATERIALS AND METHODS: The crude hydroalcoholic (PuE) and hexane (PuH) extracts of P. umbellata roots were prepared and initially submitted to an ex vivo phenotypic screening against adult S. mansoni. PuH was analyzed by HPLC-DAD, characterized by UHPLC-HRMS/MS, and submitted to chromatographic fractionation, leading to the isolation of 4-NC. The anthelmintic properties of 4-NC were assayed ex vivo against adult schistosomes and in murine models of schistosomiasis for both patent and prepatent S. mansoni infections. Praziquantel (PZQ) was used as a reference compound. RESULTS: PuE (EC50: 18.7 µg/mL) and PuH (EC50: 9.2 µg/mL) kill adult schistosomes ex vivo. The UHPLC-HRMS/MS analysis of PuH, the most active extract, revealed the presence of 4-NC, peltatol A, and peltatol B or C. After isolation from PuH, 4-NC presented remarkable in vitro schistosomicidal activity with EC50 of 2.9 µM (0.91 µg/mL) and a selectivity index higher than 68 against Vero mammalian cells, without affecting viability of nematode Caenorhabditis elegans. In patent S. mansoni infection, the oral treatment with 4-NC decreased worm burden and egg production in 52.1% and 52.3%, respectively, also reducing splenomegaly and hepatomegaly. 4-NC, unlike PZQ, showed in vivo efficacy against juvenile S. mansoni, decreasing worm burden in 52.4%. CONCLUSIONS: This study demonstrates that P. umbellata roots possess antischistosomal activity, giving support for the medicinal use of this plant against parasites. 4-NC was identified from P. umbellata roots as one of the effective in vitro and in vivo antischistosomal compound and as a potential lead for the development of novel anthelmintics.


Subject(s)
Anthelmintics , Piperaceae , Schistosomiasis mansoni , Schistosomiasis , Animals , Mice , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/parasitology , Piperaceae/chemistry , Antiparasitic Agents/pharmacology , Schistosoma mansoni , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Praziquantel/pharmacology , Schistosomiasis/drug therapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/chemistry , Mammals
3.
BMC Complement Med Ther ; 22(1): 18, 2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35057779

ABSTRACT

BACKGROUND: Breast Cancer (BC) is the most common cancer in women worldwide and, although 70% of patients are responsive to selective Estrogen Receptor (ER) modulators such as Tamoxifen (Tam), patients' survival is comprised by resistance to endocrine therapy. Brazilian flora, especially the Amazon biome, is one of the richest global sources of native species with potentially bioactive compounds. Arrabidaea chica is a plant native to the Amazon that has been used in the treatment of different diseases. However, its action on BC remains unclear. METHODS: Herein the biological effects of the chloroform extract of A. chica (CEAC) were evaluated on BC cells and in in vivo model. After confirmation of CEAC antioxidant capacity, cells were treated with CEAC and Tam, alone and with CEAC+Tam. The cell viability was evaluated by MTT and hormone receptor transcripts levels were assessed (ESR1, ESR2 and AR). Finally, anticarcinogenicity of CEAC was recorded in Drosophila melanogaster through Epithelial Tumor Test (ETT). RESULTS: The study confirmed the antioxidant activity of CEAC. CEAC was selective for MCF-7, downregulating ESR2 and AR transcripts and upregulating ESR2 expression. The modulatory effects of CEAC on ERs did not differ between cells treated with Tam and with CEAC+Tam. Interestingly, previous treatment with CEAC, followed by treatment with Tam promoted a significant decrease in cell viability. The extract also presented anticarcinogenic effect in in vivo assay. CONCLUSION: The bioassays on breast tumor cells demonstrated the antiproliferative activity of the extract, which modulated the expression of hormone receptors and sensitized luminal tumor cells to Tam. These results suggest that CEAC could be a complementary treatment for BC.


Subject(s)
Anticarcinogenic Agents/pharmacology , Antioxidants/pharmacology , Bignoniaceae , Breast Neoplasms/drug therapy , Phytotherapy , Plant Extracts/pharmacology , Animals , Biological Assay , Cell Line, Tumor/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Drosophila melanogaster , Drug Resistance, Neoplasm/drug effects , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/metabolism , Female , Humans , MCF-7 Cells/drug effects , Plants, Medicinal , Receptors, Androgen/metabolism
4.
Parasitol Res ; 120(4): 1321-1333, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33164156

ABSTRACT

Schistosomiasis, caused by a blood fluke of the genus Schistosoma, afflicts over 230 million people worldwide. Treatment of the disease relies on just one drug, praziquantel. Cnicin (Cn) is the sesquiterpene lactone found in blessed thistle (Centaurea benedicta) that showed antiparasitic activities but has not been evaluated against Schistosoma. However, cnicin has poor water solubility, which may limit its antiparasitic activities. To overcome these restrictions, inclusion complexes with cyclodextrins may be used. In this work, we evaluated the in vitro and in vivo antischistosomal activities of cnicin and its complexes with ß-cyclodextrin (ßCD) and 2-hydroxypropyl-ß-cyclodextrin (HPßCD) against Schistosoma mansoni. Cnicin were isolated from C. benedicta by chromatographic fractionation. Complexes formed by cnicin and ßCD (Cn/ßCD), as well as by cnicin and HPßCD (Cn/HPßCD), were prepared by coprecipitation and characterized. In vitro schistosomicidal assays were used to evaluate the effects of cnicin and its complexes on adult schistosomes, while the in vivo antischistosomal assays were evaluated by oral and intraperitoneal routes. Results showed that cnicin caused mortality and tegumental alterations in adult schistosomes in vitro, also showing in vivo efficacy after intraperitoneal administration. The oral treatment with cnicin or Cn/ßCD showed no significant worm reductions in a mouse model of schistosomiasis. In contrast, Cn/HPßCD complex, when orally or intraperitoneally administered to S. mansoni-infected mice, decreased the total worm load, and markedly reduced the number of eggs, showing high in vivo antischistosomal effectiveness. Permeability studies, using Nile red, indicated that HPßCD complex may reach the tegument of adult schistosomes in vivo. These results demonstrated the antischistosomal potential of cnicin in preparations with HPßCD.


Subject(s)
Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , Sesquiterpenes/pharmacology , 2-Hydroxypropyl-beta-cyclodextrin , Administration, Oral , Animals , Centaurea/chemistry , Disease Models, Animal , Drug Compounding , Feces/parasitology , Female , Injections, Intraperitoneal , Male , Mice , Parasite Egg Count , Parasite Load , Permeability , Praziquantel/pharmacology , Praziquantel/therapeutic use , Schistosomiasis mansoni/parasitology , Schistosomicides/administration & dosage , Schistosomicides/chemistry , Schistosomicides/pharmacokinetics , Sesquiterpenes/administration & dosage , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacokinetics , Solubility , beta-Cyclodextrins
5.
Acta Trop ; 213: 105741, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33159900

ABSTRACT

Schistosomiasis is a neglected disease caused by helminth flatworms of the genus Schistosoma, affecting over 240 million people in more than 70 countries. The treatment relies on a single drug, praziquantel, making urgent the discovery of new compounds. Aurones are a natural type of flavonoids that display interesting pharmacological activities, particularly as chemotherapeutic agents against parasites. In pursuit of treatment alternatives, the present work conducted an in vitro and in vivo antischistosomal investigation with aurone derivatives against Schistosoma mansoni. After preparation of aurone derivatives and their in vitro evaluation on adult schistosomes, the three most active aurones were evaluated in cytotoxicity and haemolytic assays, as well as in confocal laser-scanning microscope studies, showing tegumental damage in parasites in a concentration-dependent manner with no haemolytic or cytotoxic potential toward mammalian cells. In a mouse model of schistosomiasis, at a single oral dose of 400 mg/kg, the selected aurones showed worm burden reductions of 35% to 65.0% and egg reductions of 25% to 70.0%. The most active thiophenyl aurone derivative 18, unlike PZQ, had efficacy in mice harboring juvenile S. mansoni, also showing significant inhibition of oviposition by parasites, giving support for the antiparasitic potential of aurones as lead compounds for novel antischistosomal drugs.


Subject(s)
Benzofurans/pharmacology , Flavonoids/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Schistosomicides/pharmacology , Animals , Disease Models, Animal , Female , Flavonoids/therapeutic use , Mice , Parasitic Sensitivity Tests , Praziquantel/therapeutic use , Schistosomiasis mansoni/parasitology , Schistosomicides/therapeutic use
6.
Front Vet Sci ; 7: 527, 2020.
Article in English | MEDLINE | ID: mdl-33363224

ABSTRACT

The efficacy of Licochalcone A (LicoA) and its two analogs were reported against Leishmania (Leishmania) amazonensis and Leishmania (Leishmania) infantum in vitro, and in experimental model of L. (L.) infantum in vitro. Initially, LicoA and its analogs were screened against promastigote forms of L. (L.) amazonensis. LicoA was the most active compound, with IC50 values of 20.26 and 3.88 µM at 24 and 48 h, respectively. Against amastigote forms, the IC50 value of LicoA was 36.84 µM at 48 h. In the next step, the effectivity of LicoA was evaluated in vitro against promastigote and amastigote forms of L. (L.) infantum. Results demonstrated that LicoA exhibited leishmanicidal activity in vitro against promastigote forms with IC50 values of 41.10 and 12.47 µM at 24 and 48 h, respectively; against amastigote forms the IC50 value was 29.58 µM at 48 h. Assessment of cytotoxicity demonstrated that LicoA exhibited moderate mammalian cytotoxicity against peritoneal murine macrophages; the CC50 value was 123.21 µM at 48 h and showed about 30% of hemolytic activity at concentration of 400 µM. L. (L.) infantum-infected hamsters and treated with LicoA at 50 mg/kg for eight consecutive days was able to significantly reduce the parasite burden in both liver and spleen in 43.67 and 39.81%, respectively, when compared with negative control group. These findings suggest that chalcone-type flavonoids can be a promising class of natural products to be considered in the search of new, safe, and effective compounds capable to treat canine visceral leishmaniosis (CVL).

7.
Article in English | MEDLINE | ID: mdl-33062001

ABSTRACT

Schistosomiasis, caused by helminth flatworms of the genus Schistosoma, is a neglected tropical disease that afflicts over 230 million people worldwide. Currently, treatment is achieved with only one drug, praziquantel (PZQ). In this regard, the roots of Solidago microglossa (Asteraceae) and Aristolochia cymbifera (Aristolochiaceae) are popularly used as anthelmintic. Despite their medicinal use against helminthiasis, such as schistosomiasis, A. cymbifera, and S. microglossa have not been evaluated against S. mansoni. Then, in this work, the in vitro antischistosomal activity of the crude extracts of A. cymbifera (Ac) and S. microglossa (Sm) and their isolated compounds were investigated against S. mansoni adult worms. Sm (200 µg/mL) and Ac (100-200 µg/mL) were lethal to all male and female worms at the 24 h incubation. In addition, Sm (10-50 µg/mL) and Ac (10 µg/mL) caused significant reduction in the parasite's movements, showing no significant cytotoxicity to Vero cells at the same range of schistosomicidal concentrations. Confocal laser scanning microscopy revealed that Sm and Ac caused tegumental damages and reduced the numbers of tubercles of male schistosomes. Chromatographic fractionation of Sm leads to isolation of bauerenol, α-amirin, and spinasterol, while populifolic acid, cubebin, 2-oxopopulifolic acid methyl ester, and 2-oxopopulifolic acid were isolated from Ac. At concentrations of 25-100 µM, bauerenol, α-amirin, spinasterol, populifolic acid, and cubebin showed significant impact on motor activity of S. mansoni. 2-oxopopulifolic acid methyl ester and 2-oxopopulifolic acid caused 100% mortality and decreased the motor activity of adult schistosomes at 100 µM. This study has reported, for the first time, the in vitro antischistosomal effects of S. microglossa and A. cymbifera extracts, also showing promising compounds against adult schistosomes.

8.
Int Immunopharmacol ; 80: 106177, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32007706

ABSTRACT

Asthma is a chronic inflammatory disease that represents high hospitalizations and deaths in world. Copaiba oil (CO) is popularly used for relieving asthma symptoms and has already been shown to be effective in many inflammation models. This study aimed to investigate the immunomodulatory relationship of CO in ovalbumin (OVA)-induced allergic asthma. The composition of CO sample analyzed by GC and GC-MS and the toxicity test was performed in mice at doses of 50 or 100 mg/kg (by gavage). After, the experimental model of allergic asthma was induced with OVA and mice were orally treated with CO in two pre-established doses. The inflammatory infiltrate was evaluated in bronchoalveolar lavage fluid (BALF), while cytokines (IL-4, IL-5, IL-17, IFN-γ, TNF-α), IgE antibody and nitric oxide (NO) production was evaluated in BALF and lung homogenate (LH) of mice, together with the histology and histomorphometry of the lung tissue. CO significantly attenuated the number of inflammatory cells in BALF, suppressing NO production and reducing the response mediated by TH2 and TH17 (T helper) cells in both BALF and LH. Histopathological and histomorphometric analysis confirmed that CO significantly reduced the numbers of inflammatory infiltrate in the lung tissue, including in the parenchyma area. Our results indicate that CO has an effective in vivo antiasthmatic effect.


Subject(s)
Anti-Inflammatory Agents/administration & dosage , Asthma/drug therapy , Fabaceae/chemistry , Oils, Volatile/administration & dosage , Plant Oils/administration & dosage , Administration, Oral , Animals , Anti-Inflammatory Agents/toxicity , Asthma/blood , Asthma/immunology , Asthma/pathology , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Humans , Lung/drug effects , Lung/immunology , Lung/pathology , Mice , Nitric Oxide/metabolism , Oils, Volatile/toxicity , Ovalbumin/immunology , Plant Oils/toxicity , Th17 Cells/drug effects , Th17 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology , Toxicity Tests, Acute
9.
Article in English | MEDLINE | ID: mdl-31827562

ABSTRACT

Schistosomiasis is a neglected tropical disease that affects million people worldwide, mostly in developing countries. Ruta graveolens (Rutaceae) is a plant used in folk medicine to treat several diseases, including parasitic infections. In this study, we reported the in vitro schistosomicidal activity of the R. graveolens extract (Rg) and its active fraction (Rg-FAE). Also, the characterization of Rg-FAE by UPLC-ESI-QTOF-MS analysis and its in vitro antileishmanial activity against Leishmania braziliensis were also performed. In vitro schistosomicidal assays were assessed against adult worms of S. mansoni, while cell viability against peritoneal macrophages was measured by MTT assay. Rg (100 µg/mL) exhibited noticeable schistosomicidal activity, causing 100% mortality and decreasing motor activity of all adult male and female schistosomes, but with low activity against L. braziliensis. After chromatographic fractionation of Rg, fraction Rg-FAE was obtained, showing high activity against adult schistosomes. UPLC-ESI-QTOF-MS analysis of Rg-FAE revealed the presence of eleven alkaloids and one furanocoumarin. No significant antileishmanial activity was found for Rg, while Rg-FAE exhibited activity against L. braziliensis promastigotes. We demonstrated, for the first time, that the R. graveolens extract (Rg) and its alkaloid-rich fraction (Rg-FAE) are active against adult worms of S. mansoni, with no significant cytotoxicity on macrophages. Our findings open the route to further antiparasitic studies with the active fraction of R. graveolens and its identified compounds, especially alkaloids.

10.
Chem Biodivers ; 15(12): e1800398, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30276965

ABSTRACT

In this study, we evaluated the in vitro and in vivo schistosomicidal activities of chalcones against Schistosoma mansoni worms. In vitro assays revealed that chalcones 1 and 3 were the most active compounds, without affecting significantly mammalian cells. Confocal laser scanning microscopy and scanning electron microscopy studies revealed reduction on the numbers of tubercles and morphological alterations in the tegument of S. mansoni worms after in vitro incubation with chalcones 1 and 3. In a mouse model of schistosomiasis, the oral treatment (400 mg/kg) with chalcone 1 or 3 significantly caused a total worm burden reduction in mice. Chalcone 1 showed significant inhibition of the S. mansoni ATP diphosphohydrolase activity, which was corroborated by molecular docking studies. The results suggested that chalcones could be explored as lead compounds with antischistosomal properties.


Subject(s)
Anthelmintics/chemistry , Chalcones/pharmacology , Schistosoma mansoni/drug effects , Administration, Oral , Animals , Anthelmintics/chemical synthesis , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Apyrase/antagonists & inhibitors , Apyrase/metabolism , Binding Sites , Chalcones/chemical synthesis , Chalcones/chemistry , Chalcones/therapeutic use , Disease Models, Animal , Helminth Proteins/antagonists & inhibitors , Helminth Proteins/metabolism , Mice , Microscopy, Confocal , Microscopy, Electron, Scanning , Molecular Docking Simulation , Protein Structure, Tertiary , Schistosoma mansoni/enzymology , Schistosomiasis mansoni/drug therapy , Schistosomiasis mansoni/pathology , Structure-Activity Relationship
11.
Toxicol In Vitro ; 50: 1-10, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29476885

ABSTRACT

Schistosomiasis, caused by helminth flatworms of the genus Schistosoma, is one of the most important parasitic diseases in the world, affecting over 200 million people in developing countries. Riparins are natural alkamides found in Aniba riparia (Lauraceae) fruits that possess several pharmacological properties. In this study, we reported the synthesis, characterization and structural analysis of six riparin derivatives (A-F), as well as their schistosomicidal activity against S. mansoni worms together with a biological, pharmacokinetic and toxicological in silico evaluation. Firstly, these compounds were synthesized, purified and characterized by elemental analysis, FT-IR spectroscopy, X-ray diffraction and theoretical calculations to evaluate their stability and conformation. Next, the schistosomicidal activity of the riparins was tested against S. mansoni worms. Bioassays revealed that Riparins E and F were the most active compounds, showing half-maximum inhibitory concentration at low micromolar ranges (IC50 values ~10 µM). Also, confocal laser scanning microscopy studies revealed tegumental damage in parasites after exposition with Riparins B, E and F. Additionally, based on MTT assay, all tested riparins showed no cytotoxic potential toward mammalian cells. Finally, in silico analyses were used to predict the absorption, distribution, metabolism, elimination and toxicity (ADMET) of the compounds. Taken together, the results revealed a promising ADMET profile and suggested that riparins could be starting points for lead optimization programs for natural products with antischistosomal properties.


Subject(s)
Benzamides , Phenethylamines , Schistosomicides , Animals , Benzamides/chemistry , Benzamides/pharmacokinetics , Benzamides/pharmacology , Benzamides/toxicity , Caco-2 Cells , Cell Survival/drug effects , Chlorocebus aethiops , Computer Simulation , Humans , Intestinal Absorption , Models, Biological , Molecular Structure , Phenethylamines/chemistry , Phenethylamines/pharmacokinetics , Phenethylamines/pharmacology , Phenethylamines/toxicity , Powder Diffraction , Schistosoma mansoni/drug effects , Schistosomicides/chemistry , Schistosomicides/pharmacokinetics , Schistosomicides/pharmacology , Schistosomicides/toxicity , Skin Absorption , Spectroscopy, Fourier Transform Infrared , Vero Cells , X-Ray Diffraction
12.
Future Med Chem ; 10(1): 89-120, 2018 01.
Article in English | MEDLINE | ID: mdl-29235368

ABSTRACT

Praziquantel has remained the drug of choice for schistosomiasis chemotherapy for almost 40 years. The pressing need to develop a new antischistosomal drug may necessitate exploring and filtering chemotherapeutic history to search for the most promising ones. In this context, this review attempts to summarize all progress made in schistosomiasis chemotherapy from the early 20th century (mid-1910s) to 2016. We gathered almost 100 compounds providing information on therapeutic action, specifically covering at least first in vivo studies in animal model and in vitro. Pharmacokinetic and toxicity profiles of antischistosomal agents were also described. Preclinical studies indicate a handful of promising future candidates.


Subject(s)
Anthelmintics/pharmacology , Praziquantel/pharmacology , Schistosoma/drug effects , Schistosomiasis/drug therapy , Animals , Humans , Parasitic Sensitivity Tests
13.
Biomed Pharmacother ; 94: 489-498, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28780467

ABSTRACT

Schistosomiasis and herpes diseases represent serious issues to the healthcare systems, infecting a large number of people worldwide, mainly in developing countries. Arctium lappa L. (Asteraceae), known as "bardana" and "burdock", is a medicinal plant popularly used for several purposes, including as antiseptic. In this study, we evaluated the in vitro schistosomicidal and antiherpes activities of the crude extract of A. lappa, which have not yet been described. Fruits of A. lappa L. were extracted by maceration with ethanol: H2O (96:4 v/v) in order to obtain the hydroalcoholic extract of A. lappa (AL). In vitro schistosomicidal assays were assessed against adult worms of Schistosoma mansoni, while the in vitro antiviral activity of AL was evaluated on replication of Herpes simplex virus type-1 (HSV-1). Cell viability was measured by MTT assay, using Vero cells and chemical composition of AL was determined by qualitative UPLC-ESI-QTOF-MS analysis. UPLC-ESI-QTOF-MS analysis of AL revealed the presence of dibenzylbutyrolactone lignans, such as arctiin and arctigenin. Results showed that AL was not cytotoxic to Vero cells even when tested at 400µg/mL. qPCR results indicated a significant viral load decreased for all tested concentrations of AL (400, 50, and 3.125µg/mL), which showed similar antiviral effect to acyclovir (50µg/mL) when tested at 400µg/mL. Also, AL (400, 200, and 100µg/mL) caused 100% mortality and significantly reduction on motor activity of all adult worms of S. mansoni. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms in a dose-dependent manner after treatment with AL. This report provides the first evidence for the in vitro schistosomicidal and antiherpes activities of AL, opening the route to further schistosomicidal and antiviral studies with AL and their compounds, especially lignans.


Subject(s)
Antiviral Agents/pharmacology , Arctium/chemistry , Herpesvirus 1, Human/drug effects , Plant Extracts/pharmacology , Schistosoma mansoni/drug effects , Schistosomicides/pharmacology , Animals , Cell Death/drug effects , Cell Survival/drug effects , Chlorocebus aethiops , Chromatography, High Pressure Liquid , Male , Plant Extracts/chemistry , Reproduction/drug effects , Spectrometry, Mass, Electrospray Ionization , Vero Cells
14.
Toxicol In Vitro ; 44: 273-279, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28755871

ABSTRACT

Oxazine derivatives, a class of heterocyclic compounds, exhibit a variety of biological properties, such as anticonvulsant and antitumor activities. In this study, we evaluated the effect of two cyclohexene-fused 1,3-oxazines (cis­1-benzyl-N-phenyl-1,4,4a,5,8,8a-hexahydro-3,1-benzoxazin-2-imine (1) and trans­N-phenyl-1,4,4a,5,8,8a-hexahydro-3,1-benzoxazin-2-imine (2)) in cultures of Bacillus cereus, Enterococcus faecalis, Escherichia coli, Klebsiella pneumoniae, Salmonella enterica, Serratia marcescens, Shigella flexneri and Staphylococcus aureus by the Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC). Additionally, the ex vivo antiparasitic activity of oxazines was assessed against Schistosoma mansoni, a helminth that is one of the major agents of the disease schistosomiasis Also, oxazines were evaluated on three tumor cell lines, NCI-H292 (human lung carcinoma), MCF-7 (human breast adenocarcinoma) and HEp-2 (human cervix carcinoma), and two normal cell lines (Vero and red blood cells). Bioassays revealed that oxazine 2 is more effective against bacteria than oxazine 1, with the lowest MIC and MBC values of 3.91 and 32.5µg/mL, respectively. Similarly, compound 2 demonstrated higher antiparasitic activity than 1, and scanning electron microscopy analysis showed several morphological alterations in the tegument of worms in a concentration-dependent manner. In contrast, both oxazines exhibited low cytotoxic effects on cancer and normal cell lines. These results indicated that oxazines exerted direct effects on bacteria and parasite schistosomes. More importantly, since schistosomiasis control programs rely on one drug, praziquantel, oxazines may have the potential to become new antischistosomal agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cyclohexenes/pharmacology , Oxazines/pharmacology , Schistosomicides/pharmacology , Animals , Bacteria/drug effects , Bacteria/growth & development , Cell Line, Tumor , Cell Survival/drug effects , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Schistosoma mansoni/drug effects , Schistosoma mansoni/ultrastructure , Sheep
15.
Int J Antimicrob Agents ; 50(3): 467-472, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28666754

ABSTRACT

Schistosomiasis is a major public health problem worldwide, especially in poor communities. Since praziquantel is currently the only drug available to treat schistosomiasis, there is an urgent need to identify new antischistosomal drugs. Nerolidol is a sesquiterpene present as an essential oil in several plants that has been approved by the FDA. This study evaluated the in vivo antischistosomal activity of nerolidol in a mouse model of schistosomiasis infected with either adult or juvenile stages of Schistosoma mansoni. A single dose of nerolidol (100, 200 or 400 mg/kg) administered orally to mice infected with adult schistosomes resulted in a reduction in worm burden and egg production. Treatment with the highest nerolidol dose (400 mg/kg) caused significant reduction in a total worm burden of 70.06% (P < 0.001). Additionally, the technique of quantitative and qualitative oograms showed that a single 400 mg/kg nerolidol dose achieved an immature egg reduction of 84.6% (P < 0.001). In faecal samples, the Kato-Katz method also revealed a reduction of 75.2% in eggs/g at a dose of 400 mg/kg (P < 0.001). Furthermore, scanning electron microscopy revealed that nerolidol-mediated worm killing was associated with tegumental damage. In contrast to activity against adult S. mansoni infection, oral treatment with nerolidol 400 mg/kg had low efficacy in mice harbouring juvenile schistosomes. Since nerolidol is already in use globally as a food additive and has a proven safety record, evaluation of this natural compound's potential for treatment of schistosomiasis could be entirely cost effective in the near future.


Subject(s)
Anthelmintics/administration & dosage , Anthelmintics/pharmacology , Schistosoma mansoni/drug effects , Schistosomiasis mansoni/drug therapy , Sesquiterpenes/administration & dosage , Sesquiterpenes/pharmacology , Administration, Oral , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Feces/parasitology , Female , Male , Mice, Inbred BALB C , Microscopy, Electron, Scanning , Parasite Egg Count , Parasite Load , Schistosoma mansoni/ultrastructure , Treatment Outcome
16.
Biomed Pharmacother ; 91: 257-264, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28463791

ABSTRACT

Multiple sclerosis is the most common autoimmune inflammatory and demyelinating disease of the central nervous system. The experimental autoimmune encephalomyelitis (EAE) is an appropriate and a well-establish model for studying the pathogenesis of MS. ß-caryophyllene (BCP), a natural sesquiterpene found in many plant species, is a potent anti-inflammatory compound. Herein we investigated the in vitro and in vivo immunomodulatory effects of BCP on C57BL/6 mice induced with EAE. BCP was in vitro evaluated (4, 20, and 40µM) on splenocytes obtained from EAE-induced C57BL/6 mice, and in vivo (25 or 50mg/kg/day) orally administered on EAE-mice. The clinical course, body weight, cytokines and oxygen radicals production were investigated in C57BL/6 EAE-mice. In vitro and in vivo immunological responses were evaluated by ELISA, and CNS sections were stained by hematoxylin and eosin methods The in vitro production of H2O2, NO, IFN-γ, and TNF- α was inhibited by BCP (20 and 40µM) in cultured cells from EAE-mice. BCP (25 and 50mg/kg/day) reduced clinical score and severity of EAE and inhibited H2O2, NO, TNF-α, IFN-γ and, IL-17 production. EAE-mice, orally treated with BCP (mainly at 50mg/kg/day), displayed levels of cytokines and clinical signs similar to animals with no EAE disease, demonstrating the therapeutic action of BCP on EAE animals. Histopathological and histomorphometric analysis confirmed that BCP treatment significantly reduced the numbers of inflammatory infiltrates and attenuated neurological damages in the CNS of EAE-mice.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/drug therapy , Sesquiterpenes/therapeutic use , Animals , Central Nervous System/drug effects , Central Nervous System/pathology , Cytokines/biosynthesis , Female , Hydrogen Peroxide/metabolism , Inflammation/pathology , Mice, Inbred C57BL , Nitric Oxide/biosynthesis , Polycyclic Sesquiterpenes , Reactive Oxygen Species/metabolism , Sesquiterpenes/chemistry , Sesquiterpenes/pharmacology , Weight Loss/drug effects
17.
Planta Med ; 83(8): 693-700, 2017 May.
Article in English | MEDLINE | ID: mdl-27997959

ABSTRACT

Multiple sclerosis is a chronic inflammatory and autoimmune disease of the central nervous system that affects more than 2.5 million people worldwide. Experimental autoimmune encephalomyelitis is a murine autoimmune disease used to study multiple sclerosis. Parthenolide, a natural sesquiterpene lactone found in Tanacetum parthenium L., is known for its strong anti-inflammatory activity. Herein, we have investigated the in vitro immunomodulatory effects of parthenolide on cytokine production and nitric oxide in cultured cells from myelin oligodendrocyte glycoprotein 35-55 amino acid peptide mice. Experimental autoimmune encephalomyelitis was induced in C57BL/6 mice with myelin oligodendrocyte glycoprotein 35-55 amino acid peptide, and parthenolide was isolated from T. parthenium. Splenocytes and peritoneal cells were obtained from experimental autoimmune encephalomyelitis-induced mice and incubated with parthenolide (1, 5, and 20 µM). After in vitro treatment with parthenolide, supernatants were collected, and nitric oxide and cytokines were measured. The results suggested that parthenolide may regulate the activity of Th17 and Th1 cells, mainly by decreasing IL-17, TNF-α, and interferon gamma production. This modulation may be related to the lower levels of IL-12p40 and IL-6 after treatment with parthenolide. It was shown, for the first time, that parthenolide presents in vitro immunomodulatory effects on inflammatory mediators produced by cells from experimental autoimmune encephalomyelitis-induced mice.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Immunity, Cellular/drug effects , Multiple Sclerosis/drug therapy , Plant Extracts/therapeutic use , Sesquiterpenes/therapeutic use , Tanacetum parthenium/chemistry , Animals , Cytokines/metabolism , Encephalomyelitis, Autoimmune, Experimental/immunology , Immunologic Factors/therapeutic use , Mice, Inbred C57BL , Multiple Sclerosis/immunology , Sesquiterpenes/isolation & purification , Spleen/cytology , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology
18.
Article in English | MEDLINE | ID: mdl-27980595

ABSTRACT

Human schistosomiasis, caused by trematode worms of the genus Schistosoma, is one of the most significant neglected tropical diseases, affecting more than 200 million individuals worldwide and praziquantel is the only available drug to treat this disease. Artemisia absinthium L. and Tanacetum parthenium L. are species popularly used as anthelmintics. We investigated the in vitro schistosomicidal activity of crude extracts of A. absinthium (AA) and T. parthenium (TP) and their isolated compounds. AA and TP, at 200 µg/mL, were active, causing 100% mortality of all adult worms. Chromatographic fractionation of AA leads to isolation of artemetin and hydroxypelenolide, while santin, apigenin, and parthenolide were isolated from TP. Artemetin, hydroxypelenolide, santin, and apigenin, at 100 µM, were inactive against adult worms. Parthenolide (12.5 to 100 µM) caused 100% mortality, tegumental alterations, and reduction of motor activity of all adult worms of S. mansoni, without affecting mammalian cells. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms. This report provides the first evidence for the in vitro activity of parthenolide against adult worms of S. mansoni, opening the route to further schistosomicidal studies with this compound.

19.
Exp Parasitol ; 159: 207-14, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26454044

ABSTRACT

Schistosomiasis is one of the world's major public health problems, and its treatment is widely dependent on praziquantel (PZQ), the only available drug. Schistosoma mansoni ATP diphosphohydrolases are ecto-enzymes localized on the external tegumental surface of S. mansoni and considered an important target for action of new drugs. In this work, the in vitro schistosomicidal activity of the crude extract of Glycyrrhiza inflata roots (GI) and its isolated compounds echinatin, licoflavone A and licoflavone B were evaluated against S. mansoni adult worms. Results showed that GI (200 µg/mL) was active against adult schistosomes, causing 100% mortality after 24 h of incubation. Chromatographic fractionation of GI led to isolation of echinatin, licoflavone A and licoflavone B. Licoflavone B (25-100 µM) caused 100% mortality, tegumental alterations, and reduction of oviposition and motor activity of all adult worms, without affecting mammalian Vero cells. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms in a dose-dependent manner after incubation with licoflavone B. Licoflavone B also showed high S. mansoni ATPase (IC50 of 23.78 µM) and ADPase (IC50 of 31.50 µM) inhibitory activities. Docking studies predicted different interactions between licoflavone B and S. mansoni ATPDase 1, corroborating with the in vitro inhibitory activity. This report demonstrated the first evidence for the schistosomicidal activity of licoflavone B and suggests that its mechanism of action involve the inhibition of S. mansoni ATP diphosphohydrolases.


Subject(s)
Apyrase/antagonists & inhibitors , Flavones/pharmacology , Glycyrrhiza/chemistry , Plant Extracts/pharmacology , Schistosoma mansoni/drug effects , Schistosomicides/pharmacology , Animals , Biomphalaria , Cricetinae , Female , Flavones/chemistry , Flavones/isolation & purification , Male , Mesocricetus , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Plant Roots/chemistry , Reproduction , Schistosoma mansoni/enzymology , Schistosomicides/chemistry , Schistosomicides/isolation & purification
20.
Phytomedicine ; 22(10): 921-8, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-26321741

ABSTRACT

BACKGROUND: Schistosomiasis is one of the world's major public health problems, and praziquantel (PZQ) is the only available drug to treat this neglected disease with an urgent demand for new drugs. Recent studies indicated that extracts from Piper aduncum L. (Piperaceae) are active against adult worms of Schistosoma mansoni, the major etiological agent of human schistosomiasis. PURPOSE: We investigated the in vitro schistosomicidal activity of cardamonin, a chalcone isolated from the crude extract of P. aduncum. Also, this present work describes, for the first time, the S. mansoni ATP diphosphohydrolase inhibitory activity of cardamonin, as well as, its molecular docking with S. mansoni ATPDase1, in order to investigate its mode of inhibition. METHODS: In vitro schistosomicidal assays and confocal laser scanning microscopy were used to evaluate the effects of cardamonin on adult schistosomes. Cell viability was measured by MTT assay, and the S. mansoni ATPase activity was determined spectrophotometrically. Identification of the cardamonin binding site and its interactions on S. mansoni ATPDase1 were made by molecular docking experiments. RESULTS: A bioguided fractionation of the crude extract of P. aduncum was carried out, leading to identification of cardamonin as the active compound, along with pinocembrin and uvangoletin. Cardamonin (25, 50, and 100 µM) caused 100% mortality, tegumental alterations, and reduction of oviposition and motor activity of all adult worms of S. mansoni, without affecting mammalian cells. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms in a dose-dependent manner. Cardamonin also inhibited S. mansoni ATP diphosphohydrolase (IC50 of 23.54 µM). Molecular docking studies revealed that cardamonin interacts with the Nucleotide-Binding of SmATPDase 1. The nature of SmATPDase 1-cardamonin interactions is mainly hydrophobic and hydrogen bonding. CONCLUSION: This report provides evidence for the in vitro schistosomicidal activity of cardamonin and demonstrated, for the first time, that this chalcone is highly effective in inhibiting S. mansoni ATP diphosphohydrolase, opening the route to further studies of chalcones as prototypes for new S. mansoni ATP diphosphohydrolase inhibitors.


Subject(s)
Apyrase/antagonists & inhibitors , Chalcones/pharmacology , Piper/chemistry , Schistosoma mansoni/drug effects , Schistosomicides/pharmacology , Animals , Chlorocebus aethiops , Enzyme Inhibitors/pharmacology , Female , Male , Molecular Docking Simulation , Molecular Structure , Schistosoma mansoni/enzymology , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...