Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Basic Clin Pharmacol Toxicol ; 135(1): 3-22, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38682342

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disease that affects dopaminergic neurons, thus impairing dopaminergic signalling. Quercetin (QUE) has antioxidant and neuroprotective properties that are promising for the treatment of PD. This systematic review aimed to investigate the therapeutic effects of QUE against PD in preclinical models. The systematic search was performed in PubMed, Scopus and Web of Science. At the final screening stage, 26 articles were selected according to pre-established criteria. Selected studies used different methods for PD induction, as well as animal models. Most studies used rats (73.08%) and mice (23.08%), with 6-OHDA as the main strategy for PD induction (38.6%), followed by rotenone (30.8%). QUE was tested immersed in oil, nanosystems or in free formulations, in varied routes of administration and doses, ranging from 10 to 400 mg/kg and from 5 to 200 mg/kg in oral and intraperitoneal administrations, respectively. Overall, evidence from published data suggests a potential use of QUE as a treatment for PD, mainly through the inhibition of oxidative stress, neuroinflammatory response and apoptotic pathways.


Subject(s)
Antioxidants , Disease Models, Animal , Neuroprotective Agents , Oxidative Stress , Quercetin , Animals , Humans , Mice , Rats , Antioxidants/pharmacology , Antioxidants/therapeutic use , Apoptosis/drug effects , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Oxidative Stress/drug effects , Oxidopamine , Parkinson Disease/drug therapy , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/chemically induced , Parkinsonian Disorders/physiopathology , Quercetin/pharmacology , Rotenone
2.
Metab Brain Dis ; 37(6): 2053-2059, 2022 08.
Article in English | MEDLINE | ID: mdl-35616801

ABSTRACT

The aim of the present study was to evaluate the anti-glioma activity of 3-(4-fluorobenzyl)-5-(4-methoxybenzylidene)thiazolidine-2,4-dione (AV23) in a preclinical model of glioblastoma, as well as behavioral parameters and toxicological profile. The implantation of C6 cells in the left striatum of male Wistar rats was performed by stereotaxic surgery. After recovery, animals were treated with vehicle (canola oil) or AV23 (10 mg/kg/day) intragastrically for 15 days. It was found that AV23 reduced tumor volume by 90%. Serum biochemical parameters such as triglycerides, cholesterol, HDL-cholesterol, LDL-cholesterol, albumin, aspartate aminotransferase, urea, creatinine and total proteins were not changed; however, there was a slight increase in alanine aminotransferase. The compound AV23 reverted the hypoglycemia and the reduction in body weight caused by glioblastoma. Additionally, AV23 was able to revert the reduction of locomotion caused by the tumor implantation. Therefore, the compound AV23 can be considered a promising candidate in the treatment of glioblastoma.


Subject(s)
Glioblastoma , Thiazolidinediones , Animals , Glioblastoma/drug therapy , Male , Rats , Rats, Wistar , Thiazolidines
3.
Cell Mol Neurobiol ; 41(1): 91-104, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32236902

ABSTRACT

Photodynamic therapy (PDT) is a potential therapeutic modality against cancer, resulting from the interaction of a photosensitizer (PS) and radiation that generates damage to tumor cells. The use of near-infrared radiation (IR-A) is relevant because presents recognized biological effects, such as antioxidant, neuroprotective and antitumor effects. Glioblastoma is the most aggressive central nervous system (CNS) neoplasm with high proliferation and tissue invasion capacity and is resistant to radio and chemotherapy. Here, we evaluated in vitro the possible interaction of temozolomide (TMZ) with IR-A in a glioblastoma cell line (C6) and in a human keratinocyte cell line (HaCat) how non-tumor cell model, in an attempt to search for a new treatment strategy. The effects of TMZ, IR-A and the interaction between TMZ and IR-A was evaluated by viability exclusion with trypan blue. To perform the interaction experiments, we have chosen 10 µM TMZ and 4.5 J/cm2 of IR-A. From this, we evaluated cytotoxicity, cell proliferation, intracellular reactive oxygen species levels (ROS), as well as the process of cell migration and the P-gp and MRP-1 activity. Cell death mainly due to apoptosis, followed by necrosis, decreased cell proliferation, increased ROS levels, decreased cell migration and decreased P-gp and MRP1 activity were observed only when there was interaction between TMZ and IR-A in the C6 cell line. The interaction between TMZ and IR-A was not able to affect cell proliferation in the HaCat non-tumor cell line. Our results suggest that this interaction could be a promising approach and that in the future may serve as an antitumor strategy for PDT application.


Subject(s)
Glioblastoma/therapy , Infrared Rays/therapeutic use , Temozolomide/therapeutic use , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Animals , Apoptosis/drug effects , Apoptosis/radiation effects , Cell Line, Tumor , Cell Movement/drug effects , Cell Movement/radiation effects , Cell Survival/drug effects , Cell Survival/radiation effects , Fluorescence , HaCaT Cells , Humans , Mitotic Index , Multidrug Resistance-Associated Proteins/metabolism , Necrosis , Rats , Reactive Oxygen Species/metabolism , Temozolomide/pharmacology
4.
Eur J Pharm Sci ; 148: 105318, 2020 May 30.
Article in English | MEDLINE | ID: mdl-32205230

ABSTRACT

ß-caryophyllene is a sesquiterpene present in the oil of many plant species, such as Copaifera sp., which has been shown to possesses potent anti-inflammatory action; however, its healing activity remains under study. The objectives of the present study were to produce a nanoemulsion containing ß-caryophyllene followed by a hydrogel containing nanoemulsified ß-caryophyllene, to evaluate the permeation profile in vitro, and to assess the in vivo healing activity, which is so far unexplored in the literature for pure ß-caryophyllene and in pharmaceutical formulation. The nanoemulsion was obtained through high-pressure homogenization and the hydrogel by direct dispersion with hydroxyethylcellulose. Both formulations were characterized according to droplet size, polydispersity index, volume-weighted mean diameters, particle distribution, droplets diameters tracking, zeta potential, viscosity and bioadhesion behavior. ß-caryophyllene content was determined by gas chromatography coupled with mass spectrometry (GC/MS). Both formulations presented a nanometric droplet size, negative zeta potential, high ß-caryophyllene content, and were stable for 60 days. In agreement with the viscosity results, the hydrogel containing the ß-caryophyllene nanoemulsion showed superior bioadhesiveness than the nanoemulsion. The skin permeation study in Franz cells demonstrated that isolated ß-caryophyllene was unable to cross the stratum corneum and that its nanoemulsification promoted its permeation. On the other hand, in the simulated deeply wounded skin (dermis), no significant differences were observed between the formulations and isolated ß-caryophyllene with respect to the amount of marker retention in the dermis, suggesting saturation of this skin layer. For the study of healing activity, the dorsal wound model was performed with an evaluation of the lesion size, anti-inflammatory markers, and antioxidant activity. The initial closure of the wound was achieved sooner in the group treated with the hydrogel containing the ß-caryophyllene nanoemulsion, indicating its anti-inflammatory effect. The histological analysis indicated that on day 12 day of the lesion, the hydrogel presented similar results to those of the positive control group (Dersani® oil), proving effectiveness in cutaneous tissue repair.


Subject(s)
Polycyclic Sesquiterpenes/pharmacology , Wound Healing/drug effects , Animals , Anti-Inflammatory Agents/metabolism , Emulsions/pharmacology , Hydrogels/pharmacology , Inflammation/metabolism , Interleukin-1/metabolism , Male , Rats , Rats, Wistar , Skin/pathology , Skin Absorption/drug effects , Swine , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...