Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biofactors ; 45(1): 24-34, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30521071

ABSTRACT

The effects of radiation are known to be potentiated by N-3 polyunsaturated fatty acids, which modulate several signaling pathways, but the molecular mechanisms through which these fatty acids enhance the anticancer effects of irradiation in colorectal cancer (CRC) treatment remain poorly elucidated. Here, we aimed to ascertain whether the fatty acid docosahexaenoic acid (DHA) exerts a modulating effect on the response elicited by radiation treatment (RT). Two CRC cell lines, Caco-2 and HT-29, were exposed to RT, DHA, or both (DHA + RT) for various times, and then cell viability, proliferation, and clonogenicity were assessed. Moreover, cell cycle, apoptosis, and necrosis were analyzed using flow cytometry, and the involvement of WNT/ß-catenin signaling was investigated by immunofluorescence to determine nuclear ß-catenin, GSK3ß phosphorylation status, and TCF/LEF-activity reporter. DHA and RT applied separately diminished the viability of both HT-29 and Caco-2 cells, and DHA + RT caused a further reduction in proliferation mainly in HT-29 cells, particularly in terms of colony formation. Concomitantly, our results verified cell cycle arrest in G0/G1 phase, a reduction of cyclin D1 expression, and a decrease in GSK3ß phosphorylation after the combined treatment. Furthermore, immunofluorescence quantification revealed that nuclear ß-catenin was increased in RT-exposed cells, but this effect was abrogated in cells exposed to DHA + RT, and the results of TCF/LEF-activity assays confirmed that DHA attenuated the increase in nuclear ß-catenin activity induced by irradiation. Our finding shows that DHA applied in combination with RT enhanced the antitumor effects of irradiation on CRC cells, and that the underlying mechanism involved the WNT/ß-catenin pathway. © 2018 BioFactors, 45(1):24-34, 2019.


Subject(s)
Cell Cycle Checkpoints/drug effects , Docosahexaenoic Acids/pharmacology , Gamma Rays , Gene Expression Regulation, Neoplastic , Glycogen Synthase Kinase 3 beta/genetics , beta Catenin/genetics , Apoptosis/drug effects , Apoptosis/radiation effects , Caco-2 Cells , Cell Cycle Checkpoints/genetics , Cell Cycle Checkpoints/radiation effects , Cell Proliferation/drug effects , Cell Proliferation/radiation effects , Colony-Forming Units Assay , Cyclin D1/genetics , Cyclin D1/metabolism , Dose-Response Relationship, Drug , Glycogen Synthase Kinase 3 beta/metabolism , HT29 Cells , Humans , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Phosphorylation/drug effects , Phosphorylation/radiation effects , T Cell Transcription Factor 1/genetics , T Cell Transcription Factor 1/metabolism , Wnt Signaling Pathway , beta Catenin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...