Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Brain Res ; 452: 114562, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37394124

ABSTRACT

The mutant bate-palmas ("claps"; symbol - bapa) mice induced by the mutagenic chemical ENU present motor incoordination and postural alterations. A previous study showed that bapa mice present increased motor/exploratory behaviors during the prepubertal period due to increased striatal tyrosine hydroxylase expression, suggesting striatal dopaminergic system hyperactivity. This study aimed to evaluate the involvement of striatal dopaminergic receptors in the hyperactivity of bapa mice. Male bapa mice and their wild strain (WT) were used. Spontaneous motor behavior was observed in the open-field test, and stereotypy was evaluated after apomorphine administration. The effects of DR1 and DR2 dopaminergic antagonists (SCH-23,390; sulpiride) and the striatal DR1 and D2 receptor gene expression were evaluated. Relative to WT, bapa mice showed: 1) increased general activity for four days; 2) increased rearing and sniffing behavior and decreased immobility after apomorphine; 3) blockage of rearing behavior after the DR2 antagonist but no effect after DR1 antagonist; 4) blockage of sniffing behavior after the DR1 antagonist in bapa and WT mice but no effect after the DR2 antagonist; 5) increased immobility after the DR1 antagonist but no effect after the DR2 antagonist; 6) increased expression of striatal DR1 receptor gene and reduced the DR2 expression gene after apomorphine administration. Bapa mice showed increased activity in open field behavior. The increased rearing behavior induced by apomorphine of bapa mice resulted from the increased gene expression of the DR1 receptor.


Subject(s)
Apomorphine , Benzazepines , Animals , Male , Mice , Apomorphine/pharmacology , Benzazepines/pharmacology , Dopamine , Dopamine Antagonists/pharmacology , Receptors, Dopamine D1 , Sulpiride/pharmacology
2.
Behav Brain Res ; 378: 112233, 2020 01 27.
Article in English | MEDLINE | ID: mdl-31521736

ABSTRACT

Doxorubicin (DOX) is known to cause cognitive impairments in patients submitted to long-term chemotherapy (deficits also known as chemobrain). The present study investigated whether DOX administration could affect behavior and brain morphology, as well as oxidative and inflammatory status in rats. Male Wistar rats were injected with DOX (2.5 mg/kg/week, 4 weeks, i.p.) or saline. Behavioral analyses were performed. Brains were collected and analyzed by hematoxylin-eosin and luxol fast blue staining techniques and by immunohistochemistry (for glial fibrillary acidic protein expression in astrocytes; GFAP). Serum and brain levels of TNF-α, IL-1ß, IL-6, IL-8, IL-10 and CXCL-1 were determined. Oxidative parameters, such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione reductase (GR), nitric oxide (NO•), brain iron and ferritin levels, as well as reduced and oxidized glutathione (GSH and GSSG, respectively) and thiobarbituric acid reactive substances (TBARS) were also assessed in brain. DOX-injected rats presented cognitive/memory impairments, increased GFAP expression, increased levels of TBARS, NO and GR, but decreased GSSG and ferritin levels in brain homogenate. In addition, increased serum and brain levels of IL-6, IL-8 and CXCL1 were noted in the DOX group, although IL-10 decreased. As DOX has a poor penetration across the blood-brain barrier (BBB), it is proposed that this drug elicits a systemic proinflammatory response with increase of proinflammatory cytokines which cross the BBB and can be involved in the induction of oxidative molecules and proinflammatory cytokines that altogether induce astrogliosis all over the brain. These events may be responsable for chemotherapy-induced cognitive/memory deficits.


Subject(s)
Antibiotics, Antineoplastic/adverse effects , Behavior, Animal/drug effects , Brain/drug effects , Cognitive Dysfunction/chemically induced , Cytokines/metabolism , Doxorubicin/adverse effects , Gliosis/chemically induced , Inflammation/chemically induced , Memory Disorders/chemically induced , Oxidative Stress/drug effects , Animals , Brain/immunology , Brain/metabolism , Brain/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Cytokines/blood , Inflammation/immunology , Inflammation/metabolism , Male , Memory Disorders/metabolism , Memory Disorders/pathology , Memory Disorders/physiopathology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...