Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Parasitol Res ; 123(2): 143, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38407619

ABSTRACT

The objective of the study was to evaluate the in vitro and in vivo schistosomicidal activity of sanguinarine (SA) on Schistosoma mansoni and its in silico pharmacokinetic parameters. ADMET parameters and oral bioavailability were evaluated using the PkCSM and SwissADME platforms, respectively. The activity of SA in vitro, at the concentrations of 1.0-25 µM, was analyzed through the parameters of motility, mortality, and cell viability of the worms at intervals of 3-24 h. Mice were infected with cercariae and treated by gavage with SA (5 mg/kg/day, in a single dose or two doses of 2.5 mg/kg every 12 h for 5 consecutive days) on the 1st (skin schistosomula), 14th (pulmonary schistosomula), 28th (young worms), and 45th (adult worms) days after infection. In vitro and in vivo praziquantel was the control. In vitro, SA showed schistosomicidal activity against schistosomula, young worms, and couples; with total mortality and reduced cell viability at low concentrations and incubation time. In a single dose of 5 mg/kg/day, SA reduces the total worm load by 47.6%, 54%, 55.2%, and 27.1%, and female worms at 52.0%, 39.1%, 52.7%, and 20.2%, respectively, results which are similar to the 2.5 mg/kg/day dose. SA reduced the load of eggs in the liver, and in histopathological and histomorphometric analyses, there was a reduction in the number and volume of hepatic granulomas, which exhibited less inflammatory infiltrate. SA has promising in vitro and in vivo schistosomicidal activity against different developmental stages of S. mansoni, in addition to reducing granulomatous liver lesions. Furthermore, in silico, SA showed good predictive pharmacokinetic ADMET profiles.


Subject(s)
Alkaloids , Anti-Infective Agents , Isoquinolines , Schistosomicides , Female , Animals , Mice , Antiparasitic Agents , Schistosoma mansoni , Benzophenanthridines/pharmacology , Alkaloids/pharmacology
2.
Anticancer Agents Med Chem ; 23(12): 1469-1481, 2023.
Article in English | MEDLINE | ID: mdl-37032502

ABSTRACT

INTRODUCTION: Despite numerous scientific advances, cancer continues to be one of the main causes of death in the world. This situation has driven the search for promising molecules. Lichen substances have been widely described for their pharmacological potential. OBJECTIVE: The present study evaluated the antitumour potential of a depsidone isolated from Parmotrema concurrens- salazinic acid (SAL) - through in vitro, in vivo and in silico studies. METHODS: The molecule was isolated from the acetonic extract of the lichen and recrystallized in acetone. The macrophage J774, sarcoma-180 and MDA-MB-231 cell lines were used for the MTT cytotoxicity assay. The antitumor assay used a murine model (Swiss albino mice) with sarcoma-180. The animals were treated for seven consecutive days with doses of SAL (25 and 50 mg/kg) and 5-fluorouracil (20 mg/kg). RESULTS: Its purity was determined using high-performance liquid chromatography (94%), and its structure was confirmed by H1 and C13 nuclear magnetic resonance. SAL was not considered toxic to cancer cell lines, showing cell viability rates of 79.49 ± 4.15% and 86.88 ± 1.02% for sarcoma-180 and MDA-MB-231, respectively. The tumour inhibition rate was greater than 80% in the animals treated with SAL and 65% for those that received 5-fluorouracil. Simulations of molecular dynamics to estimate the flexibility of the interactions between human thymidylate synthase and derivatives of SAL and 5-fluorouracil revealed that SAL exhibited greater enzymatic interaction capacity, with highly favourable energy, compared to 5-fluorouracil. CONCLUSION: The present results demonstrate the potential of salazinic acid as a tumour inhibition agent.


Subject(s)
Antineoplastic Agents , Lichens , Sarcoma , Humans , Animals , Mice , Antineoplastic Agents/pharmacology , Fluorouracil/pharmacology , Salicylates , Lichens/chemistry
3.
J Ethnopharmacol ; 253: 112567, 2020 May 10.
Article in English | MEDLINE | ID: mdl-32027999

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Himatanthus drasticus is a tree popularly known as janaguba. Endemic to Brazil, it is found in the Cerrado and Caatinga biomes, rock fields, and rainforests. Janaguba latex has been used in folk medicine for its antineoplastic, anti-inflammatory, analgesic, and antiallergic activities. However, studies investigating the safety of its use for medicinal purposes are limited. AIM OF THE STUDY: This study aimed to evaluate the toxicity of the latex extracted from H. drasticus. MATERIALS AND METHODS: The latex was extracted from H. drasticus specimens by removing a small area of bark (5 × 30 cm) and then dissolving the exudate in water and lyophilizing it. Phytochemical screening was performed by TLC and GC-MS, protein, and carbohydrate levels. Cell viability was performed by the MTT method. Acute oral toxicity, genotoxicity, and mutagenicity assays were performed in mice. RESULTS: TLC showed the presence of saponins and reducing sugars, as well as steroids and terpenes. The GC-MS analysis of the nonpolar fraction identified lupeol acetate, betulin, and α/ß-amyrin derivatives as the major compounds. The latex was toxic to S-180 cells at 50 and 100 µg/mL. No signals of toxicity or mutagenicity was found in mice treated with 2000 mg/kg of the latex, but genotoxicity was observed in the Comet assay. CONCLUSIONS: H. drasticus latex showed toxicity signals at high doses (2000 mg/kg). Although the latex was not mutagenic to mice, it was genotoxic in the Comet assay in our experimental conditions. Even testing a limit dose of 2000 mg/kg, which is between 10 to 35-fold the amount used in folk medicine, caution must be taken since there is no safe level for genotoxic compounds exposure. Further studies on the toxicological aspects of H. drasticus latex are necessary to elucidate its possible mechanisms of genotoxicity.


Subject(s)
Apocynaceae/chemistry , Latex/toxicity , Mutagens/toxicity , Animals , Cell Line, Tumor , Comet Assay , Dose-Response Relationship, Drug , Humans , Latex/administration & dosage , Latex/isolation & purification , Male , Mice , Mutagens/administration & dosage , Mutagens/isolation & purification , Toxicity Tests
4.
Regul Toxicol Pharmacol ; 103: 282-291, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30790607

ABSTRACT

The fibrinolytic enzyme produced by Mucor subtilissimus UCP 1262 was obtained by solid fermentation and purified by ion exchange chromatography using DEAE-Sephadex A50. The enzyme toxicity was evaluated using mammalian cell lineages: HEK-293, J774.A1, Sarcoma-180 and PBMCs which appeared to be viable at a level of 80%. The biochemical parameters of the mice treated with an acute dose of enzyme (2000 mg/mL) identified alterations of AST and ALT and the histomorphometric analysis of the liver showed a loss of endothelial cells (P < 0.001). However, these changes are considered minimal to affirm that there was a significant degree of hepatotoxicity. The comet assay and the micronucleus test did not identify damage in the DNA of the erythrocytes of the animals treated. The protease did not degrade the Aα and Bß chains of human and bovine fibrinogens, thus indicating that it does not act as anticoagulant, but rather as a fibrinolytic agent. The assay performed to assess blood biocompatibility shows that at dose of 0.3-5 mg/mL the hemolytic grade is considered insignificant. Moreover, the enzyme did not prolong bleeding time in mice when dosed with 1 mg/kg. These results indicate that this enzyme produced is a potential competitor for developing novel antithrombotic drugs.


Subject(s)
Alanine Transaminase/metabolism , Aspartate Aminotransferases/metabolism , Fibrinolytic Agents/toxicity , Mucor/enzymology , Peptide Hydrolases/toxicity , Animals , Dose-Response Relationship, Drug , Endothelial Cells/drug effects , Fibrinolytic Agents/administration & dosage , Fibrinolytic Agents/metabolism , Liver/drug effects , Liver/pathology , Mice , Peptide Hydrolases/administration & dosage , Peptide Hydrolases/metabolism
6.
Eur J Pharm Biopharm ; 64(2): 154-60, 2006 Oct.
Article in English | MEDLINE | ID: mdl-16899355

ABSTRACT

Despite the recognised antiproliferative and antitumour properties of usnic acid, its therapeutic application has yet to be introduced. In fact, the high hepatotoxicity and low water solubility of usnic acid have somewhat restricted its practical use in anticancer therapy. The aim of this study was therefore to investigate the antitumour activity of usnic acid encapsulated into nanocapsules prepared with lactic co-glycolic acid polymer. Usnic acid-loaded nanocapsules were obtained using the interfacial deposition of a preformed polymer. The antitumour activity was confirmed on an ascitic tumour (Sarcoma-180) implanted in Swiss mice and estimated by means of the tumour inhibition. The results of antitumour activity confirmed that the encapsulation of usnic acid into PLGA-nanocapsules produced a 26.4% increase in tumour inhibition as compared with the standard free usnic acid treatment. Vacuolization of hepatocytes and a mild lymphocytic infiltration in portal spaces were observed in animals treated with free usnic acid. However, this hepatotoxicity was substantially reduced when animals were treated with usnic acid-loaded nanocapsules. No histological changes were noticed in the kidneys or spleen of animals treated either with usnic acid or usnic acid-loaded nanocapsules. These results suggest that nanoencapsulation may be a way of enabling usnic acid to be used in chemotherapy.


Subject(s)
Benzofurans/therapeutic use , Chemical and Drug Induced Liver Injury/prevention & control , Drug Compounding/methods , Nanostructures/chemistry , Sarcoma 180/drug therapy , Animals , Benzofurans/administration & dosage , Benzofurans/toxicity , Cell Line, Tumor , Chemical and Drug Induced Liver Injury/blood , Chemical and Drug Induced Liver Injury/etiology , Disease Progression , Injections, Intraperitoneal , Lactic Acid/chemistry , Liver/drug effects , Liver/pathology , Male , Mice , Polyglycolic Acid/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer , Polymers/chemistry , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...