Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Food Res Int ; 178: 113957, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38309877

ABSTRACT

The search for knowledge related to the Pitaya (Hylocereus polyrhizus [F.A.C. Weber] Britton & Rose, family Cactaceae) is commonly due to its beneficial health properties e aesthetic values. But process to obtain pitaya pulp is a first and important step in providing information for the subsequent use of this fruit as colorant, for example. Therefore, the effects of the pulping process on the metabolomic and chemometric profile of non-volatile compounds of pitaya were assessed for the first time. The differences in metabolic fingerprints using UPLC-QTOF-MSE and multivariate modeling (PCA and OPLS-DA) was performed in the following treatments: treatment A, which consists of pelled pitaya and no ascorbic acid addition during pulping; treatment B, use of unpelled pitaya added of ascorbic acid during pulping; and control, unpelled pitaya and no ascorbic acid addition during pulping. For the metabolomic analysis, UPLC-QTOF-MSE shows an efficient method for the simultaneous determination of 35 non-volatile pitaya metabolites, including isorhamnetin glucosyl rhamnosyl isomers, phyllocactin isomers, 2'-O-apiosyl-phylocactin and 4'-O-malonyl-betanin. In addition, the chemometric analysis efficiently distinguished the metabolic compounds of each treatment applied and shows that the use of unpelled pitaya added of ascorbic acid during pulping has an interesting chemical profile due to the preservation or formation of compounds, such as those derived from betalain, and higher yields, which is desirable for the food industry.


Subject(s)
Cactaceae , Chemometrics , Chromatography, High Pressure Liquid , Cactaceae/chemistry , Ascorbic Acid/metabolism
2.
J Food Sci Technol ; 58(2): 764-776, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33568870

ABSTRACT

Cashew apple extract (CAE) is a product with intense yellow color obtained from residual fibers of juice processing. Although CAE is known to be rich in carotenoids and anacardic acids, the biological activities of this potential natural food colorant remain unexplored. The present study is the first to investigate the toxicity, antiproliferative and antimicrobial activities of the lyophilized CAE (L-CAE) and its encapsulated products, using maltodextrin (M-CAE) or cashew gum (CG-CAE) as carriers. In addition to their high carotenoid content, the phenolic contents in all materials was determined using UPLC-QTOF-MSE. The acute toxicity was performed using adult zebrafish (Danio rerio); antiproliferative activity was assessed using seven different human tumor cell lines [U-251 (glioblastoma), MCF-7 (breast, adenocarcinoma), NCI-ADR/RES (multidrug-resistant ovarian adenocarcinoma), NCI-H-460 (lung, large cell carcinoma), PC-3 (prostate, adenocarcinoma), OVCAR-3 (ovarian adenocarcinoma), and HT-29 (colon, adenocarcinoma)] and an immortalized human keratinocyte (HaCaT) while the antimicrobioal activity was evaluated on Staphylococcus aureus ATCC 25923, Listeria monocytogenes ATCC 19115, Escherichia coli ATCC 25922 and Salmonella Typhimurium ATCC 51812 microorganisms. Both lyophilized and encapsulated CAE samples did not exert acute toxicity against zebrafish neither antiproliferative effect against human tumor and non-tumor cell lines. Further, L-CAE showed potential antimicrobial activity against Listeria monocytogenes, which was confirmed using electron microscopy. The current findings demonstrated that CAE is a potential source of bioactive compounds to use as an additive in the food industry.

3.
Food Res Int ; 127: 108701, 2020 01.
Article in English | MEDLINE | ID: mdl-31882110

ABSTRACT

Pitaya is a Cactacea with potential for economic exploitation, due to its high commercial value and its functional components - such betalains, oligosaccharides and phenolic compounds. Although the biological activities of pitaya have been studied using in vivo and in vitro models (anti-inflammatory and antiproliferative activities, as example), its anxiolytic-like effect is still unexplored. Therefore, the aim of this work was to perform a characterization of pulp and peel of pitaya (Hylocereus polyrhizus (F.A.C. Weber) Britton & Rose) using UPLC-QTOF-MSE, and to assess its toxicity and anxiolytic-like effect in adult zebrafish (Danio rerio). The results showed 16 and 15 compounds (in pulp and peel, respectively), including maltotriose, quercetin-3-O-hexoside, and betalains, putatively identified by UPLC-QTOF-MSE. Thus, pitaya pulp and peel showed no toxicity in both models tested (Vero cell lines and zebrafish model, LC50 ˃ 1 mg/mL); and a significant anxiolytic activity, since the treated fish reduced the permanence in the clear zone (Light & Dark Test) compared to that in the control, exhibiting anxiolytic-simile effect of diazepam. However, these effects were reduced by pre-treatment with the flumazenil suggesting that the pulp and peel of pitaya are anxiolytics agents mediated via the GABAergic system. These findings suggested that H. polyrizhus has the potential of developing an alternative plant-derived anxiolytic therapy. In addition, pitaya peel (which is a waste in the food industry) should be regarded as a valuable product, which has the potential as an economic value-added ingredient for anxiety disorders.


Subject(s)
Anti-Anxiety Agents/pharmacology , Behavior, Animal/drug effects , Cactaceae , Metabolome , Plant Extracts/pharmacology , Animals , Chromatography, High Pressure Liquid , Disease Models, Animal , Mass Spectrometry , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...