Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Chem ; 12: 1341172, 2024.
Article in English | MEDLINE | ID: mdl-38510811

ABSTRACT

Introduction: Leishmaniasis is caused by protozoa of the genus Leishmania, classified as tegumentary and visceral. The disease treatment is still a serious problem, due to the toxic effects of available drugs, the costly treatment and reports of parasitic resistance, making the search for therapeutic alternatives urgent. This study assessed the in vitro anti-leishmanial potential of the extract, fractions, and isoeleutherin from Eleutherine plicata, as well as the in silico interactions of isoeleutherin and its analogs with Trypanothione Reductase (TR), in addition to predicting pharmacokinetic parameters. Methods: From the ethanolic extract of E. plicata (EEEp) the dichloromethane fraction (FDEp) was obtained, and isoeleutherin isolated. All samples were tested against promastigotes, and parasite viability was evaluated. Isoeleutherin analogues were selected based on similarity in databases (ZINK and eMolecules) to verify the impact on structural change. Results and Discussion: The extract and its fractions were not active against the promastigote form (IC50 > 200 µg/mL), while isoeleutherin was active (IC50 = 25 µg/mL). All analogues have high intestinal absorption (HIA), cell permeability was moderate in Caco2 and low to moderate in MDCK. Structural changes interfered with plasma protein binding and blood-brain barrier permeability. Regarding metabolism, all molecules appear to be CYP3A4 metabolized and inhibited 2-3 CYPs. Molecular docking and molecular dynamics assessed the interactions between the most stable configurations of isoeleutherin, analogue compound 17, and quinacrine (control drug). Molecular dynamics simulations demonstrated stability and favorable interactions with TR. In summary, fractionation contributed to antileishmanial activity and isoleutherin seems to be promising. Structural alterations did not contribute to improve pharmacokinetic aspects and analogue 17 proved to be more promising than isoeleutherin, presenting better stabilization in TR.

2.
Toxicol Rep ; 8: 1480-1487, 2021.
Article in English | MEDLINE | ID: mdl-34401358

ABSTRACT

Eleutherine plicata has been shown to be a promising medicinal plant, and its activity has been associated with naphthoquinones. The present study aimed at evaluating the cytotoxicity, genotoxicity, and oral toxicity of the ethanol extract (EEEp), dichloromethane fraction (FDMEp) of E. plicata, and isoeleutherin. For the cytotoxicity evaluation, the viability test (MTT) was used. Genotoxicity was accessed through the Comet assay (alkaline version), acute and subacute oral toxicities were also evaluated. The antioxidant capacity of the samples in the wells where the cells were treated with E. plicata was evaluated. Furthermore, the participation of caspase-8 in the possible mechanism of action of isoeleutherin, eleutherin, and eleutherol was also investigated through a docking study. FDMEp and isoeleutherin were cytotoxic, with higher rates of DNA fragmentation observed for FDMEp and isoeleutherin, and all samples displayed higher antioxidant potential than the control. In the acute oral toxicity test, EEEp, FDMEp, and isoeleutherin did not cause significant clinical changes. In the subacute toxicity assay, EEEp and FDMEp also did not cause clinical, hematological, or biochemical changes. The three compounds bound similarly to caspase-8. Despite the results of cytotoxicity, in vitro studies demonstrated that the use of EEEp appears to be safe and cell death may involve its binding to caspase-8.

3.
Article in English | MEDLINE | ID: mdl-28194218

ABSTRACT

The present study describes the use of the traditional species Copaifera for treating wounds, such as ulcers scarring and antileishmanial wounds. It also relates phytochemical studies, evaluation of the leishmanicidal activity, and toxicity. The species of Copaifera with a higher incidence in the Amazon region are Copaifera officinalis, Copaifera reticulata, Copaifera multijuga Hayne. The copaiba oil is used in the Amazon's traditional medicine, especially as anti-inflammatory ingredient, in ulcers healing, and in scarring and for leishmaniasis. Chemical studies have shown that these oils contain diterpenes and sesquiterpenes. The copaiba oil and terpenes isolated have antiparasitic activity, more promising in the amastigote form of L. amazonensis. This activity is probably related to changes in the cell membrane and mitochondria. The oil showed low cytotoxicity and genotoxicity. Furthermore, it may interfere with immune response to infection and also has a healing effect. In summary, the copaiba oil is promising as leishmanicidal agent.

SELECTION OF CITATIONS
SEARCH DETAIL
...