Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Food Res Int ; 191: 114735, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39059967

ABSTRACT

The present study was carried out to investigate the proximate composition, fatty acid (FA) profile and volatile compounds (VC) of cooked green licuri (Syagrus coronata) - an unripe stage that is then cooked - and naturally ripe licuri almonds. The FA profiles were determined by gas chromatography (GC) and the VC composition was evaluated using headspace-solid-phase microextraction coupled with GC-MS. The cooked green licuri presented higher moisture, and lower contents of ashes, proteins and lipids than naturally ripe licuri almonds. The FA profiles of cooked green licuri and naturally ripe licuri almonds showed that saturated FAs were predominant (80%) in both samples, and the concentrations of lauric, palmitic, and oleic acids in naturally ripe licuri almonds were higher than those in cooked green licuri. Limonene was the predominant compound in naturally ripe licuri almonds. The main class of VC in the cooked green licuri were aldehydes, with 3-methyl-butanal and furfural being the main species. Alcohols, such as 3-methyl-butanol and 2-heptanol, were the main class of VC in naturally ripe licuri almonds. Among the volatile compounds, 1-hexanol and 2-nonanone contributed to the aroma of cooked green licuri almonds, whereas 2-heptanone, ethanol, and limonene contributed to the aroma of naturally ripe licuri almonds (almonds not subjected to any cooking process). In a word, cooked green licuri and naturally riped licuri almonds, despite having different proximate compositions, present similar fatty acid profile and distinct aromatic characteristics. Therefore, cooked green licuri and naturally riped licuri almonds are an alternative source of nutrient and could be investigated for the use in the food industry to enhance flavor and aroma to new products.


Subject(s)
Cooking , Fatty Acids , Gas Chromatography-Mass Spectrometry , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Fatty Acids/analysis , Brazil , Solid Phase Microextraction , Cyclohexenes/analysis , Terpenes/analysis , Limonene/analysis , Odorants/analysis , Palmitic Acid/analysis , Oleic Acid/analysis , Aldehydes/analysis , Lauric Acids/analysis , Pentanols/analysis
2.
Food Res Int ; 175: 113684, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38129028

ABSTRACT

The demand for organic vegetables is increasing worldwide, which has led to the growth of organic agriculture. However, information on chemical composition and antioxidant activity in vegetables grown organically under controlled conditions remains uncertain. For this study, 3 vegetables widely consumed in Brazil were cultivated in controlled organic and conventional cultivation systems: lettuce, coriander and tomato. Their chemical composition, mineral concentration, phenolic compound content, flavonoids and antioxidant activity (AA) were evaluated. The analyses of chemical and mineral composition revealed differences between the cultivation systems. Organic lettuce presented higher content of ashes, calcium and potassium. A higher content of phenolic compounds and flavonoids was observed in most organic vegetables. Using the 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assay, the organic tomato exhibited higher AA compared to conventional, while the ferric-reducing antioxidant power (FRAP) method showed higher AA for organic coriander and tomato than theirs conventional version. The correlation between bioactive compounds and AA was positive, higher and stronger for organic vegetables, considering phenolic compounds (including flavonoids) and DPPH or FRAP antioxidant activity. Principal Component Analysis (PCA) disclosed that organic lettuce and coriander were grouped according bioactive components. In general, organic vegetables showed better results for bioactive compounds and antioxidant activity.


Subject(s)
Antioxidants , Flavonoids , Antioxidants/analysis , Flavonoids/analysis , Vegetables/chemistry , Phenols/analysis , Minerals
SELECTION OF CITATIONS
SEARCH DETAIL