Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Environ Technol ; 44(5): 686-694, 2023 Feb.
Article in English | MEDLINE | ID: mdl-34524952

ABSTRACT

Due to the recent coronavirus-2019 pandemic, several studies have emerged looking for new materials, especially with biocidal characteristics. Thus, the present research investigates the antibacterial properties of biodegradable cellulose acetate (CA) / cetylpyridinium bromide (CPB) electrospun nanofibers, their aerosol filtration, and the possible use as a filter media of surgical face masks. Then, samples of these nanofibers were produced over a nonwoven substrate, using different volumes of polymeric solution during the electrospinning process. The evaluation of the antibacterial properties of the nanofibers was performed for Escherichia coli and Staphylococcus aureus using quantitative methods. The aerosol filtration performance was evaluated in these samples for NaCl nanoparticles (from 7-300 nm) and with 8 mL min-1 of air flow rate. The results show that the single use of the surfactant has antibacterial properties from a concentration of 39 µg mL-1 of solution. The nanofibers presented a reduction of 100% for both bacteria. Air filtration tests showed 126.03 and 207.73 Pa cm-² of pressure drops and 63 and 77% of aerosol filtration efficiency (FE) for samples with 0.13 and 0.15 mL, respectively. Regarding the nanofiber produced with 0.35 mL, the value obtained was 115.13 ± 33.64 Pa cm-2 and 3.15% of particle penetration. These breathability values are higher than those required for the surgical face mask standard, indicating that improvements in the porosity and thickness are necessary to meet the Brazilian requirements. However, the nanofibers could be applied as filter media for indoor air conditioning systems due to their FE and biocidal properties.


Subject(s)
Air Filters , Nanofibers , Nanofibers/chemistry , Masks , Filtration/methods , Anti-Bacterial Agents , Aerosols , Escherichia coli
2.
Membranes (Basel) ; 12(9)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36135880

ABSTRACT

The development of new materials with specific functionalities for certain applications has been increasing with the advent of nanotechnology. A technique widely used for this purpose is electrospinning, because control of several parameters involved in the process can yield nanoscale fibers. In addition to the production of innovative and small-scale materials, through structural, chemical, physical, and biological modifications in the fibers produced in electrospinning, it is possible to obtain specific properties for a given application. Thus, the produced fibers can serve different purposes, such as in the areas of sensors, catalysis, and environmental and medical fields. Given this context, this article presents a review of the electrospinning technique, addressing the parameters that influence the properties of the fibers formed and some techniques used to modify them as specific treatments that can be conducted during or after electrospinning. In situ addition of nanoparticles, changes in the configuration of the metallic collector, use of alternating current, electret fibers, core/shell method, coating, electrospray-coating, plasma, reinforcing composite materials, and thermal treatments are some of the examples addressed in this work. Therefore, this work contributes to a better comprehension of some of the techniques mentioned in the literature so far.

3.
Environ Sci Pollut Res Int ; 29(4): 5840-5851, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34431047

ABSTRACT

The chemical composition of particulate material plays an important role in the atmosphere, providing cloud and ice nuclei for storm development. This study aims to evaluate and infer the sources of ions, metals, and metalloids in the fine atmospheric particulate matter (PM2.5) from triple border Paraná, Santa Catarina (Brazil), and northeastern Argentina, which is among those with the highest hail incidence in the world. Among the ions, the concentrations presented the following sequence in decreasing order: [Formula: see text]> K+> [Formula: see text]> [Formula: see text]> Ca2+> Cl-> Na+> Mg2+. Regarding the metals and metalloid concentrations, the order was of S > Si > Al > Fe > P > Ti, Cr, Cu, and Zn > Br > Mn, and Ni. The main sources, supported by positive matrix factorization results, are soil and agricultural activities, as well as vehicular emissions due to the agricultural machinery and the displacement of residents. Besides, the influence of aerosols from biomass burning and industrial activities was observed, possibly come from long-distance transport. The composition of PM2.5 presents one or more elements considered present ice nuclei (IN) activity, such as Al, Mn, Cu, Co, Ni, and V (in form of oxides), corroborating with other studies, also, with high hail incidence. However, further studies are needed to verify the role of aerosol characteristics in the formation of IN and, consequently, hail.


Subject(s)
Air Pollutants , Aerosols/analysis , Air Pollutants/analysis , Brazil , Environmental Monitoring , Particulate Matter/analysis , Vehicle Emissions/analysis
SELECTION OF CITATIONS
SEARCH DETAIL