Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Genom ; 3(8): 100347, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37601967

ABSTRACT

Cystatin C (CyC), a secreted cysteine protease inhibitor, has unclear biological functions. Many patients exhibit elevated plasma CyC levels, particularly during glucocorticoid (GC) treatment. This study links GCs with CyC's systemic regulation by utilizing genome-wide association and structural equation modeling to determine CyC production genetics in the UK Biobank. Both CyC production and a polygenic score (PGS) capturing predisposition to CyC production were associated with increased all-cause and cancer-specific mortality. We found that the GC receptor directly targets CyC, leading to GC-responsive CyC secretion in macrophages and cancer cells. CyC-knockout tumors displayed significantly reduced growth and diminished recruitment of TREM2+ macrophages, which have been connected to cancer immunotherapy failure. Furthermore, the CyC-production PGS predicted checkpoint immunotherapy failure in 685 patients with metastatic cancer from combined clinical trial cohorts. In conclusion, CyC may act as a GC effector pathway via TREM2+ macrophage recruitment and may be a potential target for combination cancer immunotherapy.

2.
Nat Commun ; 14(1): 1910, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024468

ABSTRACT

PRG4 is an extracellular matrix protein that maintains homeostasis through its boundary lubricating and anti-inflammatory properties. Altered expression and function of PRG4 have been associated with joint inflammatory diseases, including osteoarthritis. Here we show that mast cell tryptase ß cleaves PRG4 in a dose- and time-dependent manner, which was confirmed by silver stain gel electrophoresis and mass spectrometry. Tryptase-treated PRG4 results in a reduction of lubrication. Compared to full-length, cleaved PRG4 further activates NF-κB expression in cells overexpressing TLR2, -4, and -5. In the destabilization of the medial meniscus model of osteoarthritis in rat, tryptase ß and PRG4 colocalize at the site of injury in knee cartilage and is associated with disease severity. When human primary synovial fibroblasts from male osteoarthritis patients or male healthy subjects treated with tryptase ß and/or PRG4 are subjected to a quantitative shotgun proteomics and proteome changes are characterized, it further supports the role of NF-κB activation. Here we show that tryptase ß as a modulator of joint lubrication in osteoarthritis via the cleavage of PRG4.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Male , Animals , Rats , Tryptases/metabolism , Proteoglycans/metabolism , Lubrication , NF-kappa B/metabolism , Osteoarthritis/metabolism , Inflammation/metabolism , Cartilage, Articular/metabolism
3.
Cell ; 185(25): 4717-4736.e25, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36493752

ABSTRACT

Adult mammalian skin wounds heal by forming fibrotic scars. We report that full-thickness injuries of reindeer antler skin (velvet) regenerate, whereas back skin forms fibrotic scar. Single-cell multi-omics reveal that uninjured velvet fibroblasts resemble human fetal fibroblasts, whereas back skin fibroblasts express inflammatory mediators mimicking pro-fibrotic adult human and rodent fibroblasts. Consequently, injury elicits site-specific immune responses: back skin fibroblasts amplify myeloid infiltration and maturation during repair, whereas velvet fibroblasts adopt an immunosuppressive phenotype that restricts leukocyte recruitment and hastens immune resolution. Ectopic transplantation of velvet to scar-forming back skin is initially regenerative, but progressively transitions to a fibrotic phenotype akin to the scarless fetal-to-scar-forming transition reported in humans. Skin regeneration is diminished by intensifying, or enhanced by neutralizing, these pathologic fibroblast-immune interactions. Reindeer represent a powerful comparative model for interrogating divergent wound healing outcomes, and our results nominate decoupling of fibroblast-immune interactions as a promising approach to mitigate scar.


Subject(s)
Reindeer , Wound Healing , Adult , Animals , Humans , Cicatrix/pathology , Fibroblasts/pathology , Skin Transplantation , Skin/pathology , Fetus/pathology
4.
Traffic ; 23(11): 538-553, 2022 11.
Article in English | MEDLINE | ID: mdl-36117140

ABSTRACT

Those who study macrophage biology struggle with the decision whether to utilize primary macrophages derived directly from mice or opt for the convenience and genetic tractability of immortalized macrophage-like cell lines in in vitro studies. Particularly when it comes to studying phagocytosis and phagosomal maturation-a signature cellular process of the macrophage-many commonly used cell lines are not representative of what occurs in primary macrophages. A system developed by Mark Kamps' group, that utilizes conditionally constitutive activity of Hox transcription factors (Hoxb8 and Hoxa9) to immortalize differentiation-competent myeloid cell progenitors of mice, offers an alternative to the macrophage/macrophage-like dichotomy. In this resource, we will review the use of Hoxb8 and Hoxa9 as hematopoietic regulators to conditionally immortalize murine hematopoietic progenitor cells which retain their ability to differentiate into many functional immune cell types including macrophages, neutrophils, basophils, osteoclasts, eosinophils, dendritic cells, as well as limited potential for the generation of lymphocytes. We further demonstrate that the use of macrophages derived from Hoxb8/Hoxa9 immortalized progenitors and their similarities to bone marrow-derived macrophages. To supplement the existing data, mass spectrometry-based proteomics, flow cytometry, cytology, and in vitro phagosomal assays were conducted on macrophages derived from Hoxb8 immortalized progenitors and compared to bone marrow-derived macrophages and the macrophage-like cell line J774. We additionally propose the use of a standardized nomenclature to describe cells derived from the Hoxb8/Hoxa9 system in anticipation of their expanded use in the study of leukocyte cell biology.


Subject(s)
Hematopoietic Stem Cells , Macrophages , Animals , Cell Differentiation , Macrophages/metabolism , Mice , Transcription Factors/metabolism
5.
Proc Natl Acad Sci U S A ; 119(32): e2111726119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35914162

ABSTRACT

A large number of neutrophils infiltrate the lymph node (LN) within 4 h after Staphylococcus aureus skin infection (4 h postinfection [hpi]) and prevent systemic S. aureus dissemination. It is not clear how infection in the skin can remotely and effectively recruit neutrophils to the LN. Here, we found that lymphatic vessel occlusion substantially reduced neutrophil recruitment to the LN. Lymphatic vessels effectively transported bacteria and proinflammatory chemokines (i.e., Chemokine [C-X-C motif] motif 1 [CXCL1] and CXCL2) to the LN. However, in the absence of lymph flow, S. aureus alone in the LN was insufficient to recruit neutrophils to the LN at 4 hpi. Instead, lymph flow facilitated the earliest neutrophil recruitment to the LN by delivering chemokines (i.e., CXCL1, CXCL2) from the site of infection. Lymphatic dysfunction is often found during inflammation. During oxazolone (OX)-induced skin inflammation, CXCL1/2 in the LN was reduced after infection. The interrupted LN conduits further disrupted the flow of lymph and impeded its communication with high endothelial venules (HEVs), resulting in impaired neutrophil migration. The impaired neutrophil interaction with bacteria contributed to persistent infection in the LN. Our studies showed that both the flow of lymph from lymphatic vessels to the LN and the distribution of lymph in the LN are critical to ensure optimal neutrophil migration and timely innate immune protection in S. aureus infection.


Subject(s)
Chemokines , Neutrophil Infiltration , Skin Diseases, Bacterial , Staphylococcal Infections , Animals , Chemokines/immunology , Immunity, Innate , Inflammation/pathology , Lymph/immunology , Lymph Nodes/cytology , Mice , Mice, Inbred C57BL , Neutrophils/cytology , Skin Diseases, Bacterial/immunology , Staphylococcal Infections/immunology , Staphylococcus aureus
6.
Pharmacol Rev ; 74(3): 712-768, 2022 07.
Article in English | MEDLINE | ID: mdl-35738680

ABSTRACT

The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.


Subject(s)
Matrix Metalloproteinase Inhibitors , Neoplasms , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Humans , Matrix Metalloproteinase Inhibitors/metabolism , Matrix Metalloproteinase Inhibitors/pharmacology , Matrix Metalloproteinase Inhibitors/therapeutic use , Matrix Metalloproteinases/metabolism , Matrix Metalloproteinases/therapeutic use , Neoplasms/metabolism , Proteolysis
7.
Front Cardiovasc Med ; 9: 791700, 2022.
Article in English | MEDLINE | ID: mdl-35310970

ABSTRACT

Diabetic cardiomyopathy (DbCM) occurs independently of cardiovascular diseases or hypertension, leading to heart failure and increased risk for death in diabetic patients. To investigate the molecular mechanisms involved in DbCM, we performed a quantitative proteomic profiling analysis in the left ventricle (LV) of type 2 diabetic mice. Six-month-old C57BL/6J-lepr/lepr (db/db) mice exhibited DbCM associated with diastolic dysfunction and cardiac hypertrophy. Using quantitative shotgun proteomic analysis, we identified 53 differentially expressed proteins in the LVs of db/db mice, majorly associated with the regulation of energy metabolism. The subunits of ATP synthase that form the F1 domain, and Cytochrome c1, a catalytic core subunit of the complex III primarily responsible for electron transfer to Cytochrome c, were upregulated in diabetic LVs. Upregulation of these key proteins may represent an adaptive mechanism by diabetic heart, resulting in increased electron transfer and thereby enhancement of mitochondrial ATP production. Conversely, diabetic LVs also showed a decrease in peptide levels of NADH dehydrogenase 1ß subcomplex subunit 11, a subunit of complex I that catalyzes the transfer of electrons to ubiquinone. Moreover, the atypical kinase COQ8A, an essential lipid-soluble electron transporter involved in the biosynthesis of ubiquinone, was also downregulated in diabetic LVs. Our study indicates that despite attempts by hearts from diabetic mice to augment mitochondrial ATP energetics, decreased levels of key components of the electron transport chain may contribute to impaired mitochondrial ATP production. Preserved basal mitochondrial respiration along with the markedly reduced maximal respiratory capacity in the LVs of db/db mice corroborate the association between altered mitochondrial metabolic profile and cardiac dysfunction in DbCM.

8.
Nat Med ; 28(1): 201-211, 2022 01.
Article in English | MEDLINE | ID: mdl-34782790

ABSTRACT

Although critical for host defense, innate immune cells are also pathologic drivers of acute respiratory distress syndrome (ARDS). Innate immune dynamics during Coronavirus Disease 2019 (COVID-19) ARDS, compared to ARDS from other respiratory pathogens, is unclear. Moreover, mechanisms underlying the beneficial effects of dexamethasone during severe COVID-19 remain elusive. Using single-cell RNA sequencing and plasma proteomics, we discovered that, compared to bacterial ARDS, COVID-19 was associated with expansion of distinct neutrophil states characterized by interferon (IFN) and prostaglandin signaling. Dexamethasone during severe COVID-19 affected circulating neutrophils, altered IFNactive neutrophils, downregulated interferon-stimulated genes and activated IL-1R2+ neutrophils. Dexamethasone also expanded immunosuppressive immature neutrophils and remodeled cellular interactions by changing neutrophils from information receivers into information providers. Male patients had higher proportions of IFNactive neutrophils and preferential steroid-induced immature neutrophil expansion, potentially affecting outcomes. Our single-cell atlas (see 'Data availability' section) defines COVID-19-enriched neutrophil states and molecular mechanisms of dexamethasone action to develop targeted immunotherapies for severe COVID-19.


Subject(s)
COVID-19/immunology , Cytokines/immunology , Dexamethasone/therapeutic use , Glucocorticoids/therapeutic use , Neutrophils/immunology , Pneumonia, Bacterial/immunology , Respiratory Distress Syndrome/immunology , Adult , Aged , COVID-19/complications , COVID-19/genetics , Cell Communication , Chromatography, Liquid , Down-Regulation , Female , Gene Regulatory Networks , Humans , Immunity, Innate/immunology , Interferons/immunology , Male , Middle Aged , Neutrophils/metabolism , Pneumonia, Bacterial/complications , Pneumonia, Bacterial/drug therapy , Pneumonia, Bacterial/genetics , Prostaglandins/immunology , Proteomics , RNA-Seq , Respiratory Distress Syndrome/drug therapy , Respiratory Distress Syndrome/etiology , Respiratory Distress Syndrome/genetics , SARS-CoV-2 , Severity of Illness Index , Sex Factors , Single-Cell Analysis , Tandem Mass Spectrometry , COVID-19 Drug Treatment
9.
Front Pharmacol ; 12: 787193, 2021.
Article in English | MEDLINE | ID: mdl-34950038

ABSTRACT

Sjogren's syndrome (SS) is characterized by dysfunctional mucous membranes and dysregulated moisture-secreting glands resulting in various symptoms, including dry mouth and dry eyes. Here, we wanted to profile and compare the tear and saliva proteomes of SS patients to healthy controls. Tear and saliva samples were collected and subjected to an isotopic dimethylation labeling shotgun proteomics workflow to identify alterations in protein levels. In tear samples, we identified 83 upregulated and 112 downregulated proteins. Pathway enrichment analysis of the changing proteins by Metascape identified leukocyte transendothelial migration, neutrophil degranulation, and post-translation protein phosphorylation in tears of SS patients. In healthy controls' tears, an enrichment for proteins related to glycolysis, amino acid metabolism and apoptotic signaling pathway were identified. In saliva, we identified 108 upregulated and 45 downregulated proteins. Altered pathways in SS patients' saliva included cornification, sensory perception to taste and neutrophil degranulation. In healthy controls' saliva, an enrichment for proteins related to JAK-STAT signaling after interleukin-12 stimulation, phagocytosis and glycolysis in senescence were identified. Dysregulated protease activity is implicated in the initiation of inflammation and immune cell recruitment in SS. We identified 20 proteases and protease inhibitors in tears and 18 in saliva which are differentially expressed between SS patients and healthy controls. Next, we quantified endogenous proteoglycan 4 (PRG4), a mucin-like glycoprotein, in tear wash and saliva samples via a bead-based immune assay. We identified decreased levels of PRG4 in SS patients' tear wash compared to normal samples. Conversely, in saliva, we found elevated levels of PRG4 concentration and visualized PRG4 expression in human parotid gland via immunohistological staining. These findings will improve our mechanistic understanding of the disease and changes in SS patients' protein expression will help identify new potential drug targets. PRG4 is among the promising targets, which we identified here, in saliva, for the first time.

10.
Biochemistry ; 59(3): 329-340, 2020 01 28.
Article in English | MEDLINE | ID: mdl-31774660

ABSTRACT

Legumain (asparaginyl endopeptidase) is the only protease with a preference for cleavage after asparagine residues. Increased legumain activity is a hallmark of inflammation, neurodegenerative diseases, and cancer, and legumain inhibitors have exhibited therapeutic effects in mouse models of these pathologies. Improved knowledge of its substrates and cellular functions is a requisite to further validation of legumain as a drug target. We, therefore, aimed to investigate the effects of legumain inhibition in macrophages using an unbiased and systematic approach. By shotgun proteomics, we identified 16 094 unique peptides in RAW264.7 cells. Among these, 326 unique peptides were upregulated in response to legumain inhibition, while 241 were downregulated. Many of these proteins were associated with mitochondria and metabolism, especially iron metabolism, indicating that legumain may have a previously unknown impact on related processes. Furthermore, we used N-terminomics/TAILS (terminal amine isotopic labeling of substrates) to identify potential substrates of legumain. We identified three new proteins that are cleaved after asparagine residues, which may reflect legumain-dependent cleavage. We confirmed that frataxin, a mitochondrial protein associated with the formation of iron-sulfur clusters, can be cleaved by legumain. This further asserts a potential contribution of legumain to mitochondrial function and iron metabolism. Lastly, we also identified a potential new cleavage site within legumain itself that may give rise to a 25 kDa form of legumain that has previously been observed in multiple cell and tissue types. Collectively, these data shed new light on the potential functions of legumain and will be critical for understanding its contribution to disease.


Subject(s)
Cysteine Endopeptidases/chemistry , Mitochondria/metabolism , Peptides/genetics , Proteomics , Animals , Asparagine/chemistry , Asparagine/genetics , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Gene Expression Regulation/genetics , Humans , Iron/metabolism , Isotope Labeling , Macrophages/chemistry , Macrophages/metabolism , Mice , Mitochondria/genetics , Peptides/chemistry , RAW 264.7 Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...