Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Toxicol Environ Health A ; 86(23): 871-897, 2023 12 02.
Article in English | MEDLINE | ID: mdl-37682045

ABSTRACT

Heliotropium elongatum is used to treat inflammation, cough, and flu. This study aimed to characterize the phytochemical profile and determine the total phenolic content (TPC), antioxidant and cytogenotoxic activity of the ethanolic extract (EE), and fractions of H. elongatum leaves. In the phytochemical profile analysis, organic acids, reducing sugars, flavonoids, saponins, anthraquinones, steroids/triterpenes, and depsides/depsidones were detected in the EE and/or fractions (hexanic/FH, chloroformic/FC, ethyl acetate/FAE, and hydromethanolic/FHM). The highest TPC and highest antioxidant activity (DPPH and ABTS) was detected in FHM. In FH, 16 compounds were identified by GC-MS, and ursolic acid was isolated by 1H NMR and 13C NMR. HPLC-DAD from EE, FAE, and FHM demonstrated characteristic wavelengths for flavonoids, flavonols, flavones, and anthraquinones. ESI-IT/MSn analysis of EE, FC, FAE, and FHM revealed alkaloids, steroids, terpenoids, flavonoids, and phenolic acids. In Allium cepa assay there was no significant cytotoxic effect initiated by EE (62.5 to 1,000 µg/ml), FHM (1,000 µg/ml), and FAE (62.5 µg/ml). Genotoxicity was evidenced only with EE at 500 and 1,000 µg/ml, and FHM (62.5 to 1,000 µg/ml) as evidenced by presence of micronuclei (MN) and nuclear buds (NB). Our results identified compounds of medicinal interest with antioxidant activity; however observed cytogenotoxic changes indicated the need for caution when using these compounds for therapeutic purposes.


Subject(s)
Antioxidants , Heliotropium , Flavonoids , Anthraquinones , Biological Assay , Ethanol
2.
Drug Chem Toxicol ; 46(1): 104-112, 2023 Jan.
Article in English | MEDLINE | ID: mdl-34906022

ABSTRACT

Amburana cearensis leaves have been used in folk medicine to treat respiratory diseases and inflammations. This study aimed to evaluate the biological potential of A. cearensis leaves by antioxidant and in vitro cytogenotoxic analyses of ethanolic crude extract (EE) and its fractions in healthy human cells. The EE was obtained by percolation, followed by fractionation using dichloromethane, cyclohexane, ethyl acetate (EtOAc), and methanol (MeOH) as organic solvents. Extract and all fractions were evaluated for their antioxidant potential by DPPH and reducing power tests. In vitro cytotoxic activity was determined in human peripheral blood mononuclear cells by MTT assay for the extract, EtOAc and MeOH fractions. In turn, the genotoxic activity was determined in human lymphocytes by the Cytokinesis Block Micronucleus assay only for the EtOAc fraction. Only EtOAc fraction was analyzed via gas chromatography coupled to mass spectrometry due to its higher biological activity. Considering the antioxidant potential, the EtOAc fraction was most effective in DPPH (EC50 43.37 µg/mL) and reducing power (EC50 89.80 µg/mL) assays. GC-MS analysis of the EtOAc fraction led to the identification of guaiacol, 2,3-dihydro-benzofuran, 2-methoxy-4-vinylphenol, isovanillic acid methyl ester, 4-hydroxybenzaldehyde, and 4-(ethoxymethyl)-phenol. The EE (400-1000 µg/mL), EtOAc (≤150 µg/mL) and MeOH (50 and 150-600 µg/mL) fractions were not cytotoxic by MTT test. Additionally, the EtOAc fraction (100-400 µg/mL) did not induce significant genotoxic damage. Concentrations of the EtOAc fraction with antioxidant activity showed no cytotoxicity, nor genotoxicity potential, indicating them as a nontoxic natural antioxidant source.


Subject(s)
Antioxidants , Fabaceae , Humans , Antioxidants/pharmacology , Antioxidants/chemistry , Plant Extracts/toxicity , Plant Extracts/chemistry , Leukocytes, Mononuclear , Gas Chromatography-Mass Spectrometry
3.
J Toxicol Environ Health A ; 85(24): 1002-1018, 2022 12 17.
Article in English | MEDLINE | ID: mdl-36415179

ABSTRACT

Croton heliotropiifolius Kunth, popularly known as "quince" and "velame," contains a high concentration of volatile oils in the leaves, and widely used in folk medicine as an antiseptic, analgesic, sedative, anti-inflammatory, spasmolytic and local anesthetic. The objectives of this investigation were to (1) identify the phytochemical compounds and (2) assess the cytogenotoxicity of the essential oil extracted from the leaves of C. heliotropiifolius Kunth. The oil was extracted utilizing hydrodistillation and phytochemical profile determined using gas chromatography and mass spectrometry (GCMS). In the toxicogenetics analysis, Allium cepa roots were exposed to 1% dimethylsulfoxide or methylmethanesulfonate (MMS, 10 µg/ml) negative and positive controls, respectively, and to C. heliotropiifolius oil at 6 concentrations (0.32; 1.6; 8; 40; 200 or 1000 µg/ml). The phytochemical profile exhibited 40 chromatographic bands, and 33 compounds identified. α-pinene (16.7%) and 1,8-cineole (13.81%) were identified as the major compounds. Some of these identified secondary metabolites displayed biological and pharmacological activities previously reported including antiseptic, analgesic, sedative, anti-inflammatory as well insecticidal, antiviral, anti-fungal actions. In the A. cepa test, C. heliotropiifolius leaves oil induced cytotoxicity at concentrations of 0.32, 1.6 or 200 µg/ml and genotoxicity at 200 or 1000 µg/ml as evidenced by increased presence of micronuclei and significant chromosomal losses. Based upon our observations data demonstrated that the essential oil of C. heliotropiifolius leaves contain monoterpene hydrocarbons, and oxygenated monoterpenes, sesquiterpenes, and oxygenated sesquiterpenes which are associated with cytotoxic and genotoxic responses noted in on A. cepa cells.


Subject(s)
Anti-Infective Agents, Local , Croton , Oils, Volatile , Oils, Volatile/toxicity , Plant Leaves , Monoterpenes , Hypnotics and Sedatives
4.
J Toxicol Environ Health A ; 84(19): 769-782, 2021 10 02.
Article in English | MEDLINE | ID: mdl-34176449

ABSTRACT

Kavain, kavalactone, present in Piper methysticum exhibits anticonvulsive, analgesic, anxiolytic, antiepileptic, antithrombotic, anti-inflammatory and antioxidant properties. Given its importance, the aim of the present study was to assess (1) the mutagenic and carcinogenicity of kavain administered alone and (2) the antimutagenic and anticarcinogenic potential when administered simultaneously with the chemotherapeutic drug doxorubicin (DXR) using the Somatic Mutation and Recombination Test (SMART) and Epithelial Tumor Test (ETT) using Drosophila melanogaster as a model system. Third-stage larvae from a standard (ST) and high metabolic bioactivation (HB) crosses were treated with different kavain concentrations (32, 64 or 128 µg/ml), alone or in conjunction with DXR (0.125 mg/ml). In ST descendants, kavain produced no significant mutagenic or recombinogenic effects. In the HB cross, mutagenic activity was observed at kavain concentrations of 64 and 128 µg/ml. In the DXR and kavain co-treatment, a modulating effect of the DXR-mediated mutagenic response dependent upon the concentration was detected in both crosses. In ETT, no marked carcinogenic or anticarcinogenic activity was noted for kavain. However, when kavain was combined with DXR synergistic induction of tumors by the chemotherapeutic drug occurred indicating that kavain enhanced the carcinogenic action of DXR.


Subject(s)
Doxorubicin/toxicity , Drosophila melanogaster/drug effects , Protective Agents/pharmacology , Pyrones/pharmacology , Animals , Carcinogenesis , Carcinogens/toxicity , Drosophila melanogaster/growth & development , Larva/drug effects , Larva/growth & development , Mutagenicity Tests , Mutagens/toxicity
5.
J Toxicol Environ Health A ; 84(18): 743-760, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34120581

ABSTRACT

Jatropha mollissima is used in folk medicine as antimicrobial, antiparasitic, and larvicidal. However, few toxicogenetic studies have been carried out. Therefore, the aim of this study was to determine the phytochemical profile of ethanolic leaf extract of J. mollissima (EEJM) as well as potential cytotoxic, mutagenic, and antimutagenic properties. The EEJM was subjected to successive fractionation for the isolation of secondary metabolites, and five concentrations (0.01; 0.1; 1; 10 and 100 mg/ml) of extract were investigated using Allium cepa assay and the Somatic Mutation and Recombination (SMART) test. The mitotic index and % damage reduction were analyzed for A. cepa and the frequency of mutant hair for SMART. The presence of coumarins, alkaloids, flavonoids, saponins, and tannins was detected, while spinasterol and n-triacontane were the isolates identified for the first time for this species. EEJM did not exhibit cytotoxicity and was not mutagenic at 1 or 10 mg/ml using A. cepa and all concentrations of EEJM were not mutagenic in the SMART test. A cytoprotective effect was found at all concentrations. At 1 or 10 mg/ml EEJM exhibited antimutagenicity in A. cepa. In SMART, the protective effect was observed at 0.1 to 100 mg/ml EEJM. Our results demonstrate the important chemopreventive activity of EEJM, a desired quality in the search for natural anticarcinogenic compounds.


Subject(s)
Jatropha/chemistry , Mutagenicity Tests , Onions/drug effects , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Protective Agents/pharmacology , Dose-Response Relationship, Drug , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry
6.
J Toxicol Environ Health A ; 84(10): 399-417, 2021 05 19.
Article in English | MEDLINE | ID: mdl-33494643

ABSTRACT

Combretum leprosum Mart. (Combretaceae), a shrub popularly known as mofumbo, is used in folk medicine for treatment of uterine bleeding, pertussis, gastric pain, and as a sedative. The aim of this study was to (1) determine the phytochemical profile,(2) identify chemical constituents and (3) examine antioxidant and cytogenotoxic activity of ethanolic extracts and fractions of stem bark and leaves. The plant material (leaf and stem bark) was submitted to extraction with ethanol, followed by partition using hexane, chloroform, and ethyl acetate. It was possible to identify and quantify the epicatechin in the ethanolic stem bark extract (0.065 mg/g extract) and rutin in the leaf extract (3.33 mg/g extract). Based upon in vitro tests a significant relationship was noted between findings from antioxidant tests and levels of total phenolic and flavonoid. Comparing all samples (extracts and fractions), the ethyl acetate fractions of stem bark (411.40 ± 15.38 GAE/g) and leaves (225.49 ± 9.47 GAE/g) exhibited higher phenolic content, whereas hexanic fraction of stem bark (124.28 ± 56 mg/g sample) and ethyl acetate fraction of leaves (238.91 ± 1.73 mg/g sample) demonstrated a higher content of flavonoids. Among the antioxidant tests, the intermediate fraction of stem bark (28.5 ± 0.60 µg/ml) and ethyl acetate fraction of leaves (40 ± 0.56 µg/ml) displayed a higher % inhibition of free radical DPPH activity, whereas intermediate fraction of stem bark (27.5 ± 0.9 µg/ml) and hydromethanol fraction of leaves (81 ± 1.4 µg/ml) demonstrated inhibition of the free radical ABTS. In biological tests (Allium cepa and micronucleus in peripheral blood), data showed that none of the tested concentrations of ethanolic extracts of leaves and stem bark produced significant cytotoxicity, genotoxicity, and mutagenic activity.Abbreviations AA%: percentage of antioxidant activity; ABTS: 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid); CEUA: Ethics Committee in the Use of Animals; TLC: Thin Layer Chromatography; DNA: deoxyribonucleic acid; DPPH: 1,1-diphenyl-2-picrylhydrazyl; ROS: Reactive oxygen species; EEB: ethanol extract of the stem bark; HFB: Hexanic fraction of stem bark; IFB: Intermediate fraction of stem bark; CFB: Chloroform fraction of stem bark; EAFB: Ethyl acetate fraction of stem bark; HMFB: Hydromethanol fraction of the stem bark; EEL: Ethanol extract from leaves; HFL: Hexane fraction of leaves; CFL: Chloroform fraction of leaves; EAFL: Ethyl acetate fraction of leaves; HMFL: Hydromethanol fraction of leaves; GAE: Gallic Acid Equivalent; IC50: 50% inhibition concentration; HCOOH: Formic acid; HCl: hydrochloric acid; HPLC: High-performance liquid chromatography; MN: micronucleus; WHO: World Health Organization; UFLC: Ultra-Fast Liquid Chromatography; UESPI: State University of Piauí.


Subject(s)
Antioxidants , Combretum/chemistry , Flavonoids , Phenols , Plant Extracts/pharmacology , Plant Extracts/toxicity , Antioxidants/pharmacology , Cytotoxins/toxicity , Flavonoids/pharmacology , Flavonoids/toxicity , Micronucleus Tests , Mutagens/toxicity , Onions/drug effects , Phenols/pharmacology , Phenols/toxicity , Phytochemicals/chemistry , Phytochemicals/pharmacology , Phytochemicals/toxicity , Plant Bark/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Plant Stems/chemistry
7.
J Toxicol Environ Health A ; 83(23-24): 730-747, 2020 12 16.
Article in English | MEDLINE | ID: mdl-32998665

ABSTRACT

POINCIANELLA BRACTEOSA: has been widely used in folk medicine to treat catarrhal infections, diarrhea, and anemia; however, phytochemical and toxicogenetic data are still lacking. The objective of this study was to examine the phytochemical and antioxidant characteristics as well as assess cytogenotoxicity and antigenotoxicity in hexane (HF), ether (EF) and ethyl acetate (AF) fractions of P. bracteosa leaves using Allium cepa bioassay. Phytochemical analysis revealed the presence of saponins and phenolic groups. EF fraction contained a higher content of total phenolics (441.23 ± 1.82 mg GAE/g), while HF fraction showed a higher content of total flavonoids (84.77 ± 5.33 mg QE/g). Higher antioxidant activity was observed in EF (EC50 25.06 ± 0.07 µg/ml). Cytotoxic effect was verified for all fractions, but no chromosomal alterations were observed in the A. cepa assay. With respect to antigenotoxicity, the protective effect of EF and AF fractions was attributed to as evidenced by the modulation of mutagenic action of methyl methanesulfonate (MMS), mainly by inhibiting the development of micronuclei. Among the fractions, EF was considered the most promising, as it exhibited higher antioxidant activity, was not genotoxic, exerted protective activity against the damage induced by MMS and also presented cytotoxic activity, a desired quality in the search for natural anticarcinogenic compounds.


Subject(s)
Antioxidants/pharmacology , Fabaceae/chemistry , Phytochemicals/pharmacology , Plant Extracts/pharmacology , Antioxidants/chemistry , Flavonoids/analysis , Mutagenicity Tests , Phenols/analysis , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry
8.
Genet Mol Biol ; 38(1): 93-100, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25983630

ABSTRACT

Jatropha gossypiifolia L. (Euphorbiaceae), popularly known as cotton-leaf physicnut, is a milky shrub notable for its medicinal properties. The present study aimed to evaluate the toxic, cytotoxic and genotoxic effects of the latex of J. gossypiifolia, using Allium cepa L. as test system. Seeds of A. cepa were exposed to five concentrations of the latex (1.25; 2.5; 5; 10 and 20 mL/L) in order to evaluate parameters of toxicity (evaluation of root growth), cytotoxicity (mitotic index frequency) and genotoxicity (frequency of chromosome alterations). The latex showed a significant decrease in root mean growth value as well as mitotic index for the tested concentrations, except for 1.25 mL/L, when compared to results from the negative control. The 1.25, 2.5 and 5 mL/L concentrations induced significant chromo-some adherences, C-metaphases and/or chromosome bridges, as genotoxic effects. The significant frequency of chromosome bridges also indicated mutagenic potential for chromosomes of J. gossypiifolia as discussed in the paper. Considering that the latex is used in popular therapies, and that the test system A. cepa presents good correlation with tests carried out in mammals, it can be pointed out that its use for medicinal purposes may be harmful to human health especially if ingested.

SELECTION OF CITATIONS
SEARCH DETAIL
...