Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Food Res Int ; 152: 110907, 2022 02.
Article in English | MEDLINE | ID: mdl-35181079

ABSTRACT

Oleaginous microorganisms, including the fungus Umbelopsis isabellina, have emerged as a biotechnological alternative to obtain polyunsaturated fatty acid-rich oils, which are strongly linked to energy purposes (biofuel) than the food industry. Considering the composition of microbial oil and its use by the food industry, it is necessary to investigate strategies that increase its lipid stability. Ergo, this pioneering study aimed to microencapsulate the oil produced by Umbelopsis isabellina and evaluate its oxidative stability throughout the storage period against factors such as temperature and luminosity. The microbial oil was microencapsulated through the external ionic gelation technique, producing an encapsulation efficiency of 80% and proving to be a suitable method because it maintained oil composition. Combining microencapsulation and refrigerated storage led to the best effects on storage time, increasing the evaluated lipid stability through the peroxide values and conjugated diene formation. Moreover, saturated and monounsaturated fatty acid content increased, and polyunsaturated fatty acid content decreased during storage for both the free and microencapsulated oil, regardless of storage temperature, although microencapsulation reduced the changes. The results primarily demonstrate how microencapsulation prolongs the oxidative stability and unsaturated fatty acid content of the microbial oil by reducing its reactions to external environmental factors, thus facilitating its use in the food industry.


Subject(s)
Fatty Acids, Unsaturated , Oils , Fungi , Oxidation-Reduction
2.
Curr Drug Discov Technol ; 16(1): 96-103, 2019.
Article in English | MEDLINE | ID: mdl-29962347

ABSTRACT

BACKGROUND: Species of Valeriana show sedative, hypnotic, anxiolytic, antidepressant and anti-inflammatory properties, which are associated with valepotriates. However, data about toxicity and safety of these compounds are still limited. The aim of this study was to investigate the toxicity of a valepotriate-enriched fraction (VAL) from Valeriana glechomifolia Meyer based on the Organization for Economic Cooperation and Development (OECD) guidelines 423 and 407. METHODS: In the acute study, CF1 mice were treated with a single dose of VAL (2000 mg/kg, p.o.) and observed for 14 days. In the repeated dose study, CF1 mice received single daily doses of VAL (30, 150 or 300 mg/kg, p.o.) or vehicle for 28 days. These doses were chosen based on previous results by our group and according to Guideline 407- OECD. RESULTS: The acute study allowed to classify VAL in the hazard category 5. The repeat-dose study has shown that VAL 300 mg/kg delayed weight gain and reduced food consumption in the first week, probably due to transient sedative effects. The other doses had no effect on animals' ponderal evolution. At the end of the treatment, all groups had equal body weight and food consumption. None of the doses altered any behavioral, urinary, biochemical, hematological, anatomic or histological parameters. CONCLUSION: A valepotriate-enriched fraction from Valeriana glechomifolia presents relatively low oral acute toxicity and does not induce evident toxicity after oral repeated treatment (at least up to 300 mg/kg) in mice.


Subject(s)
Iridoids/toxicity , Plant Extracts/toxicity , Valerian , Administration, Oral , Animals , Body Weight/drug effects , Eating/drug effects , Male , Mice , Toxicity Tests, Acute , Toxicity Tests, Subacute
3.
Physiol Behav ; 124: 116-22, 2014 Jan 30.
Article in English | MEDLINE | ID: mdl-24239994

ABSTRACT

Hypothyroidism has been associated to psychiatric disorder development and tissue oxidative damage. In this study, we evaluated the effect of diphenyl diselenide supplementation on depressive-like behavior triggered by methimazole exposure in female rats. Additionally, thiobarbituric acid reactive substances (TBARS), reactive oxygen species (ROS) and non-protein thiol (NP-SH) levels were analyzed in cerebral cortex, hippocampus and striatum structures of rats. Monoamine oxidase (MAO) activity was evaluated in total brain. Firstly, female rats received methimazole (MTZ) 20mg/100ml in the drinking water for 30days and were evaluated in open-field and forced swimming tests (FST). In this set of experiments, the rats exposed to MTZ presented a depressive-like behavior, which was evidenced by a significant increase in the immobility time when compared to control group. Thereafter, MTZ-induced hypothyroid rats received either a standard or a diet containing 5ppm of diphenyl diselenide, and then they were evaluated monthly in open-field and FST tests during 3months. No alteration on the locomotor performance was observed among the groups. The depressive-like behavior of hypothyroid rats was blunted by diphenyl diselenide supplementation during all experimental periods. The levels of thyroid hormones remained low in MTZ exposed groups until the end of experimental period. The MTZ group had an increase in TBARS and ROS levels that were restored by diphenyl diselenide supplementation. NP-SH content of cerebral structures was not modified by MTZ exposure and/or diphenyl diselenide supplementation. Diphenyl diselenide supplementation restored the MAO B activity that was decreased in MTZ group. In summary, our results show that hypothyroidism induced by MTZ methimazole triggers a depressive-like behavior in female rats and that dietary diphenyl diselenide was able to reduce this effect.


Subject(s)
Antidepressive Agents/therapeutic use , Benzene Derivatives/therapeutic use , Depression/diet therapy , Organoselenium Compounds/therapeutic use , Animals , Antidepressive Agents/pharmacology , Benzene Derivatives/pharmacology , Brain/metabolism , Depression/blood , Depression/complications , Female , Hypothyroidism/blood , Hypothyroidism/chemically induced , Hypothyroidism/complications , Hypothyroidism/diet therapy , Immobility Response, Tonic/drug effects , Lipid Peroxidation/drug effects , Methimazole , Monoamine Oxidase/metabolism , Motor Activity/drug effects , Organoselenium Compounds/pharmacology , Rats , Reactive Oxygen Species/metabolism , Sulfhydryl Compounds/metabolism , Thiobarbituric Acid Reactive Substances/metabolism , Thyroid Hormones/blood , Thyroid Hormones/deficiency
4.
Fish Physiol Biochem ; 39(4): 837-49, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23135153

ABSTRACT

This study examined ammonia, urea, creatinine, protein, nitrite, nitrate, and phosphorus (P) excretion at different water hardness, humic acid, or pH levels in silver catfish (Rhamdia quelen) juveniles. The fish were exposed to different levels of water hardness (4, 24, 50, or 100 mg L(-1) CaCO3), humic acid (0, 2.5, or 5.0 mg L(-1)), or pH (5.0, 6.0, 7.0, 8.0, or 9.0) for 10 days. The overall measured nitrogen excretions were 88.1% (244-423 µmol kg(-1 )h(-1)) for ammonia, 10.9% (30-52 µmol kg(-1 )h(-1)) for creatinine, 0.02% (0.05-0.08 µmol kg(-1 )h(-1)) for protein, 0.001 % (0.002-0.004 µmol kg(-1 )h(-1)) for urea, 0.5% (0.64-3.6 µmol kg(-1 )h(-1)) for nitrite, and 0.5% (0.0-6.9 µmol kg(-1 )h(-1)) for nitrate, and these proportions were not affected by water hardness or humic acid levels. The overall P excretion in R. quelen was 0.14-2.97 µmol kg(-1) h(-1). Ammonia excretion in R. quelen usually was significantly higher in the first 12 h after feeding, and no clear effect of water hardness, humic acid levels, and pH on this daily pattern of ammonia excretion could be observed. Water hardness only affected the ammonia and P excretion of R. quelen juveniles in the initial and fifth days after transfer, respectively. The exposure of this species to humic acid increased ammonia excretion after 10 days of exposure but did not affect P excretion. An increase in pH decreased ammonia and increased creatinine excretion but did not change P excretion in R. quelen. Therefore, when there is any change on humic acid levels or pH in the culture of this species, nitrogenous compounds must be monitored because their excretion rates are variable. On the other hand, P excretion rates determined in the present study are applicable to a wide range of fish culture conditions.


Subject(s)
Calcium Carbonate/administration & dosage , Catfishes/urine , Nitrogen Compounds/urine , Phosphorus/urine , Animals , Humic Substances , Hydrogen-Ion Concentration , Water/chemistry
5.
Cell Biochem Funct ; 27(7): 473-8, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19784960

ABSTRACT

This study evaluated the effect of possible synergic interaction between high fat diet (HF) and hydrochlorothiazide (HCTZ) on biochemical parameters of oxidative stress in brain. Rats were fed for 16 weeks with a control diet or with an HF, both supplemented with different doses of HCTZ (0.4, 1.0, and 4.0 g kg(-1) of diet). HF associated with HCTZ caused a significant increase in lipid peroxidation and blood glucose levels. In addition, HF ingestion was associated with an increase in cerebral lipid peroxidation, vitamin C and non-protein thiol groups (NPSH) levels. There was an increase in vitamin C as well as NPSH levels in HCTZ (1.0 and 4.0 g kg(-1) of diet) and HF plus HCTZ groups. Na(+)-K(+)-ATPase activity of HCTZ (4.0 g kg(-1) of diet) and HCTZ plus HF-fed animals was significantly inhibited. Our data indicate that chronic intake of a high dose of HCTZ (4 g kg(-1) of diet) or HF change biochemical indexes of oxidative stress in rat brain. Furthermore, high-fat diets consumption and HCTZ treatment have interactive effects on brain, showing that a long-term intake of high-fat diets can aggravate the toxicity of HCTZ.


Subject(s)
Brain/drug effects , Brain/metabolism , Dietary Fats/administration & dosage , Dietary Fats/pharmacology , Hydrochlorothiazide/pharmacology , Oxidative Stress/drug effects , Animals , Ascorbic Acid/metabolism , Blood Glucose/metabolism , Brain/enzymology , Brain/pathology , Lipid Peroxidation/drug effects , Male , Organ Size/drug effects , Rats , Rats, Wistar , Sodium-Potassium-Exchanging ATPase/metabolism , Sulfhydryl Compounds/metabolism , Thiobarbituric Acid Reactive Substances/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL