Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Entomol ; 60(3): 443-452, 2023 05 12.
Article in English | MEDLINE | ID: mdl-36896663

ABSTRACT

Several mosquito species in the Atlantic Forest are yellow fever vectors; therefore, this biome can represent a potential risk to the human population. Studies on mosquitoes from predominantly sylvatic areas produce valuable data for understanding the emergence of new epidemics. In addition, they can elucidate environmental components favoring or hindering biodiversity and species distribution. Our study aimed to evaluate the monthly distribution, composition, diversity, and influence of seasonal periods (dry and rainy) on the mosquito fauna. We used CDC light traps at different levels in a forest area bordering a Conservation Unit of Nova Iguaçu in the state of Rio de Janeiro, Brazil. Specimens were collected from August 2018 to July 2019 by installing traps in sampling sites under different vegetation covers. We detected some species of epidemiological importance in terms of arbovirus transmission. A total of 4,048 specimens representing 20 different species were collected. Among them, Aedes (Stg.) albopictus Skuse, 1894 showed recurrent association with the closest level to human residences and Haemagogus (Con.) leucocelaenus Dyar and Shannon, 1924 with the most distant levels. Since these mosquitoes are possible vectors of yellow fever, monitoring the area is extremely important. Under the studied conditions, the mosquito populations were directly influenced by dry and rainy periods, posing a risk to the nearby resident population.


Subject(s)
Aedes , Culicidae , Yellow Fever , Humans , Animals , Brazil , Mosquito Vectors , Forests
2.
Microbiol Spectr ; 10(2): e0015522, 2022 04 27.
Article in English | MEDLINE | ID: mdl-35254139

ABSTRACT

Since the introduction of the Zika virus (ZIKV) into Brazil in 2015, its transmission dynamics have been intensively studied in many parts of the country, although much is still unknown about its circulation in the midwestern states. Here, using nanopore technology, we obtained 23 novel partial and near-complete ZIKV genomes from the state of Goiás, located in the Midwest of Brazil. Genomic, phylogenetic, and epidemiological approaches were used to retrospectively explore the spatiotemporal evolution of the ZIKV-Asian genotype in this region. As a likely consequence of a gradual accumulation of herd immunity, epidemiological data revealed a decline in the number of reported cases over 2018 to 2021. Phylogenetic reconstructions revealed that multiple independent introductions of the Asian lineage have occurred in Goiás over time and revealed a complex transmission dynamic between epidemic seasons. Together, our results highlight the utility of genomic, epidemiological, and evolutionary methods to understand mosquito-borne epidemics. IMPORTANCE Despite the considerable morbidity and mortality of arboviral infections in Brazil, such as Zika, chikungunya, dengue fever, and yellow fever, our understanding of these outbreaks is hampered by the limited availability of genomic data to track and control the epidemic. In this study, we provide a retrospective reconstruction of the Zika virus transmission dynamics in the state of Goiás by analyzing genomic data from areas in Midwest Brazil not covered by other previous studies. Our study provides an understanding of how ZIKV initiates transmission in this region and reveals a complex transmission dynamic between epidemic seasons. Together, our results highlight the utility of genomic, epidemiological, and evolutionary methods to understand mosquito-borne epidemics, revealing how this toolkit can be used to help policymakers prioritize areas to be targeted, especially in the context of finite public health resources.


Subject(s)
Zika Virus Infection , Zika Virus , Animals , Brazil/epidemiology , Phylogeny , Retrospective Studies , Zika Virus/genetics , Zika Virus Infection/epidemiology
3.
Viruses ; 11(12)2019 12 16.
Article in English | MEDLINE | ID: mdl-31888285

ABSTRACT

Zika virus (ZIKV) was first discovered in 1947 in Uganda but was not considered a public health threat until 2007 when it found to be the source of epidemic activity in Asia. Epidemic activity spread to Brazil in 2014 and continued to spread throughout the tropical and subtropical regions of the Americas. Despite ZIKV being zoonotic in origin, information about transmission, or even exposure of non-human vertebrates and mosquitoes to ZIKV in the Americas, is lacking. Accordingly, from February 2017 to March 2018, we sought evidence of sylvatic ZIKV transmission by sampling whole blood from approximately 2000 domestic and wild vertebrates of over 100 species in West-Central Brazil within the active human ZIKV transmission area. In addition, we collected over 24,300 mosquitoes of at least 17 genera and 62 species. We screened whole blood samples and mosquito pools for ZIKV RNA using pan-flavivirus primers in a real-time reverse-transcription polymerase chain reaction (RT-PCR) in a SYBR Green platform. Positives were confirmed using ZIKV-specific envelope gene real-time RT-PCR and nucleotide sequencing. Of the 2068 vertebrates tested, none were ZIKV positive. Of the 23,315 non-engorged mosquitoes consolidated into 1503 pools tested, 22 (1.5%) with full data available showed some degree of homology to insect-specific flaviviruses. To identify previous exposure to ZIKV, 1498 plasma samples representing 62 species of domestic and sylvatic vertebrates were tested for ZIKV-neutralizing antibodies by plaque reduction neutralization test (PRNT90). From these, 23 (1.5%) of seven species were seropositive for ZIKV and negative for dengue virus serotype 2, yellow fever virus, and West Nile virus, suggesting potential monotypic reaction for ZIKV. Results presented here suggest no active transmission of ZIKV in non-human vertebrate populations or in alternative vector candidates, but suggest that vertebrates around human populations have indeed been exposed to ZIKV in West-Central Brazil.


Subject(s)
Zika Virus Infection/epidemiology , Zika Virus Infection/virology , Zika Virus , Animals , Brazil/epidemiology , Culicidae , Geography, Medical , Humans , Mosquito Vectors , Neutralization Tests , Public Health Surveillance , Seroepidemiologic Studies , Zika Virus Infection/transmission , Zoonoses
SELECTION OF CITATIONS
SEARCH DETAIL
...