Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 100(2): e02541, 2019 02.
Article in English | MEDLINE | ID: mdl-30707454

ABSTRACT

Epiphytes are hyper-diverse and one of the frequently undervalued life forms in plant surveys and biodiversity inventories. Epiphytes of the Atlantic Forest, one of the most endangered ecosystems in the world, have high endemism and radiated recently in the Pliocene. We aimed to (1) compile an extensive Atlantic Forest data set on vascular, non-vascular plants (including hemiepiphytes), and lichen epiphyte species occurrence and abundance; (2) describe the epiphyte distribution in the Atlantic Forest, in order to indicate future sampling efforts. Our work presents the first epiphyte data set with information on abundance and occurrence of epiphyte phorophyte species. All data compiled here come from three main sources provided by the authors: published sources (comprising peer-reviewed articles, books, and theses), unpublished data, and herbarium data. We compiled a data set composed of 2,095 species, from 89,270 holo/hemiepiphyte records, in the Atlantic Forest of Brazil, Argentina, Paraguay, and Uruguay, recorded from 1824 to early 2018. Most of the records were from qualitative data (occurrence only, 88%), well distributed throughout the Atlantic Forest. For quantitative records, the most common sampling method was individual trees (71%), followed by plot sampling (19%), and transect sampling (10%). Angiosperms (81%) were the most frequently registered group, and Bromeliaceae and Orchidaceae were the families with the greatest number of records (27,272 and 21,945, respectively). Ferns and Lycophytes presented fewer records than Angiosperms, and Polypodiaceae were the most recorded family, and more concentrated in the Southern and Southeastern regions. Data on non-vascular plants and lichens were scarce, with a few disjunct records concentrated in the Northeastern region of the Atlantic Forest. For all non-vascular plant records, Lejeuneaceae, a family of liverworts, was the most recorded family. We hope that our effort to organize scattered epiphyte data help advance the knowledge of epiphyte ecology, as well as our understanding of macroecological and biogeographical patterns in the Atlantic Forest. No copyright restrictions are associated with the data set. Please cite this Ecology Data Paper if the data are used in publication and teaching events.

2.
Anat Rec (Hoboken) ; 296(4): 622-9, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23408596

ABSTRACT

The assembly of a phenotype into modules or developmental fields, which are semiautonomous units in development and function, seems to be one of the strategies to increase the capacity to produce phenotypic variation. In mammals the upper dentition is formed on two distinct developmental units, wherein incisors are formed on the primary palate, which is derived from the embryonic frontonasal process, and the other teeth (canine, premolar, and molar) are formed on the alveolar bone, which is derived from the maxillary process (termed herein as PALATE2). The aim of the present work was to analyze the variations in size and number of premolar and molar teeth in primate dentition and to correlate these morphometrical parameters with the relative size of these tooth classes with respect to PALATE2. Furthermore, we seek to understand to what extent the changes in the relative size of premolar and molar fields can influence the size of each tooth within its respective field, and how these parameters connect with the variations in the dental formula that occurred during primate evolution. The data presented here not only indicate that premolar and molar fields can be seen as submodules of a larger and hierarchically superior module (i.e., PALATE2) but also present quantitative parameters that allow us to understand how variations in the relative size of premolar and molar teeth connect with the variations in the dental formula that occurred during primate evolution.


Subject(s)
Alveolar Process/anatomy & histology , Bicuspid/anatomy & histology , Biological Evolution , Maxilla/anatomy & histology , Molar/anatomy & histology , Primates/anatomy & histology , Animals , Image Processing, Computer-Assisted , Least-Squares Analysis , Linear Models , Male , Phenotype
3.
Proc Natl Acad Sci U S A ; 108(48): 19270-5, 2011 Nov 29.
Article in English | MEDLINE | ID: mdl-22084104

ABSTRACT

Timing of organ development during embryogenesis is coordinated such that at birth, organ and fetal size and maturity are appropriately proportioned. The extent to which local developmental timers are integrated with each other and with the signaling interactions that regulate morphogenesis to achieve this end is not understood. Using the absolute requirement for a signaling pathway activity (bone morphogenetic protein, BMP) during a critical stage of tooth development, we show that suboptimal levels of BMP signaling do not lead to abnormal morphogenesis, as suggested by mutants affecting BMP signaling, but to a 24-h stalling of the intrinsic developmental clock of the tooth. During this time, BMP levels accumulate to reach critical levels whereupon tooth development restarts, accelerates to catch up with development of the rest of the embryo and completes normal morphogenesis. This suggests that individual organs can autonomously control their developmental timing to adjust their stage of development to that of other organs. We also find that although BMP signaling is critical for the bud-to-cap transition in all teeth, levels of BMP signaling are regulated differently in multicusped teeth. We identify an interaction between two homeodomain transcription factors, Barx1 and Msx1, which is responsible for setting critical levels of BMP activity in multicusped teeth and provides evidence that correlates the levels of Barx1 transcriptional activity with cuspal complexity. This study highlights the importance of absolute levels of signaling activity for development and illustrates remarkable self-regulation in organogenesis that ensures coordination of developmental processes such that timing is subordinate to developmental structure.


Subject(s)
Bone Morphogenetic Proteins/metabolism , Homeodomain Proteins/metabolism , MSX1 Transcription Factor/metabolism , Odontogenesis/physiology , Signal Transduction/physiology , Tooth/embryology , Transcription Factors/metabolism , Age Factors , Animals , DNA Primers/genetics , Fluorescent Antibody Technique , Humans , Immunoprecipitation , In Situ Hybridization , Mice , Mice, Knockout , X-Ray Microtomography
SELECTION OF CITATIONS
SEARCH DETAIL
...