Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 12(1): 5937, 2021 Oct 12.
Article in English | MEDLINE | ID: mdl-34642345

ABSTRACT

Development of sustainable processes for hydrocarbons synthesis is a fundamental challenge in chemistry since these are of unquestionable importance for the production of many essential synthetic chemicals, materials and carbon-based fuels. Current industrial processes rely on non-abundant metal catalysts, temperatures of hundreds of Celsius and pressures of tens of bars. We propose an alternative gas phase process under mild reaction conditions using only atomic carbon, molecular hydrogen and an inert carrier gas. We demonstrate that the presence of CH2 and H radicals leads to efficient C-C chain growth, producing micron-length fibres of unbranched alkanes with an average length distribution between C23-C33. Ab-initio calculations uncover a thermodynamically favourable methylene coupling process on the surface of carbonaceous nanoparticles, which is kinematically facilitated by a trap-and-release mechanism of the reactants and nanoparticles that is confirmed by a steady incompressible flow simulation. This work could lead to future alternative sustainable synthetic routes to critical alkane-based chemicals or fuels.

2.
Angew Chem Int Ed Engl ; 59(51): 23220-23227, 2020 Dec 14.
Article in English | MEDLINE | ID: mdl-32761699

ABSTRACT

On-surface synthesis is emerging as a highly rational bottom-up methodology for the synthesis of molecular structures that are unattainable or complex to obtain by wet chemistry. Here, oligomers of meta-polyaniline, a known ferromagnetic polymer, were synthesized from para-aminophenol building-blocks via an unexpected and highly specific on-surface formal 1,4 Michael-type addition at the meta position, driven by the reduction of the aminophenol molecule. We rationalize this dehydrogenation and coupling reaction mechanism with a combination of in situ scanning tunneling and non-contact atomic force microscopies, high-resolution synchrotron-based X-ray photoemission spectroscopy and first-principles calculations. This study demonstrates the capability of surfaces to selectively modify local molecular conditions to redirect well-established synthetic routes, such as Michael coupling, towards the rational synthesis of new covalent nanostructures.

3.
ACS Appl Mater Interfaces ; 12(25): 28894-28902, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32482063

ABSTRACT

Macroscopic current-voltage measurements and nanoscopic ballistic electron emission spectroscopy (BEES) have been used to probe the Schottky barrier height (SBH) at metal/Ge(100) junctions for two metal electrodes (Au and Pt) and different metallization methods, specifically, thermal-vapor and laser-vapor deposition. Analysis of macroscopic current-voltage characteristics indicates that a SBH of 0.61-0.63 eV controls rectification at room temperature. On the other hand, BEES measured at 80 K reveals the coexistence of two distinct barriers at the nanoscale, taking values in the ranges 0.61-0.64 and 0.70-0.74 eV for the cases studied. For each metal-semiconductor junction, the macroscopic measurement agrees well with the lower barrier found with BEES. Ab initio modeling of BEES spectra ascribes the two barriers to two different atomic registries between the metals and the Ge(100) surface, a significant relevant insight for next-generation highly miniaturized Ge-based devices.

4.
ChemSusChem ; 13(5): 1027-1036, 2020 Mar 09.
Article in English | MEDLINE | ID: mdl-31872959

ABSTRACT

Ab initio molecular dynamics (MD) simulations and NMR GIPAW (gauge including projector augmented wave) calculations have been used to analyze the coordination and mobility of Li ions in LiTi2 (PO4 )3 (rhombohedral), LiZr2 (PO4 )3 (triclinic), and LiZr2 (PO4 )3 (rhombohedral) phases. Significant discrepancies are observed between static calculations of 7 Li quadrupolar parameters and experimental values. The dynamical origin of this disagreement is demonstrated by incorporating in the calculations thermal vibrations and local motion of atoms with MD simulations. For LiTi2 (PO4 )3 , the quadrupolar constant associated with Li ions grows with temperature because the local symmetry of the system decreases, whereas for the Zr phases, the quadrupolar constant decreases because thermal vibrations reduce the anisotropy of the interaction. Finally, for both Zr phases, MD yields Li distributions that compare well with disorder reported from diffraction studies.

5.
Sci Rep ; 9(1): 12127, 2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31431656

ABSTRACT

Ab-initio Density Functional Theory has been used to compute phonons for interstitial hydrogen in α-iron. In the harmonic approximation, these phonons yield Helmholtz's free energy as a function of temperature, which can be used to obtain diffusion barriers from an Arrhenius plot. By comparing with the experimental database compiled by Kiuchi and McLellan, we show that the role of phonons is crucial to understand the diffusion of interstitial hydrogen at T > 300 K. The computed specific heat for Fe16H and Fe behaves quite differently due to the appearance of optical modes and could be used to calibrate the amount of interstitials in the iron matrix.

6.
J Am Chem Soc ; 141(8): 3550-3557, 2019 02 27.
Article in English | MEDLINE | ID: mdl-30623650

ABSTRACT

The activation, hydrogenation, and covalent coupling of polycyclic aromatic hydrocarbons (PAHs) are processes of great importance in fields like chemistry, energy, biology, or health, among others. So far, they are based on the use of catalysts which drive and increase the efficiency of the thermally- or light-induced reaction. Here, we report on the catalyst-free covalent coupling of nonfunctionalized PAHs adsorbed on a relatively inert surface in the presence of atomic hydrogen. The underlying mechanism has been characterized by high-resolution scanning tunnelling microscopy and rationalized by density functional theory calculations. It is based on the formation of intermediate radical-like species upon hydrogen-induced molecular superhydrogenation which favors the covalent binding of PAHs in a thermally activated process, resulting in large coupled molecular nanostructures. The mechanism proposed in this work opens a door toward the direct formation of covalent, PAH-based, bottom-up synthesized nanoarchitectures on technologically relevant inert surfaces.

7.
Top Catal ; 61(12-13): 1290-1299, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30197487

ABSTRACT

Within the context of a "hydrogen economy", it is paramount to guarantee a stable supply of molecular hydrogen to devices such as fuel cells. At the same time, catalytic conversion of the environmentally harmful methane into ethane, with a significantly lower Global Warming Potential, turns into a highly desirable challenge. Herein we propose a first-step novel proof-of-concept mechanism to accomplish both tasks simultaneously. For that purpose we provide transition-state barriers and reaction Helmholtz free energies obtained from first-principles Density Functional Theory by taking account vibrations for 2CH4(g) → C2H6(g) + H2(g) to show that molecular hydrogen can be produced by subnanometer Pt38 and Au38 nanoparticles from natural gas. Interestingly, the active sites for the reaction are located on different planes on the two nanoparticles, effectively differentiating the working principle of the two metals. The analysis shows that the complete cycle to reduce CH4 can be performed on Au and Pt with similar efficiencies, but Au requires only half the working temperature of Pt. This substantial decrease of temperature can be traced back to several intermediate steps, but most crucially to the final one where the catalyst must be cleaned from H(⋆) to be able to restart the catalytic cycle. This simple study case provides useful guidelines to capitalize on finite-size effects in small nanoparticles for the design of new and more efficient catalysts. Interestingly, present results obtained for the intermediate steps of the catalytic cycle show an excellent agreement with previous experimental evidence. Finally, we stress the importance of including the final cleaning steps to start a new fresh catalytic cycle.

8.
Angew Chem Int Ed Engl ; 57(28): 8582-8586, 2018 07 09.
Article in English | MEDLINE | ID: mdl-29931817

ABSTRACT

On-surface synthesis is an emerging approach to obtain, in a single step, precisely defined chemical species that cannot be obtained by other synthetic routes. The control of the electronic structure of organic/metal interfaces is crucial for defining the performance of many optoelectronic devices. A facile on-surface chemistry route has now been used to synthesize the strong electron-acceptor organic molecule quinoneazine directly on a Cu(110) surface, via thermally activated covalent coupling of para-aminophenol precursors. The mechanism is described using a combination of in situ surface characterization techniques and theoretical methods. Owing to a strong surface-molecule interaction, the quinoneazine molecule accommodates 1.2 electrons at its carbonyl ends, inducing an intramolecular charge redistribution and leading to partial conjugation of the rings, conferring azo-character at the nitrogen sites.

9.
J Phys Chem C Nanomater Interfaces ; 118(46): 26882-26886, 2014 Nov 20.
Article in English | MEDLINE | ID: mdl-26709358

ABSTRACT

We describe a mechanism that explains the formation of hydrocarbons and hydrocarbyls from hydrogenated graphene/graphite; hard C-C bonds are weakened and broken by the synergistic effect of chemisorbed hydrogen and high temperature vibrations. Total energies, optimized structures, and transition states are obtained from Density Functional Theory simulations. These values have been used to determine the Boltzman probability for a thermal fluctuation to overcome the kinetic barriers, yielding the time scale for an event to occur. This mechanism can be used to rationalize the possible routes for the creation of small hydrocarbons and hydrocarbyls from etched graphene/graphite in stellar regions.

10.
Chemistry ; 18(24): 7382-7, 2012 Jun 11.
Article in English | MEDLINE | ID: mdl-22573475

ABSTRACT

The adsorption of C(60), a typical acceptor organic molecule, on a TiO(2) (110) surface has been investigated by a multitechnique combination, including van der Waals density functional calculations. It is shown that the adsorbed molecules form a weakly interacting molecular layer, which sits on the fivefold-coordinated Ti that is confined between the prominent bridging oxygen rows (see figure).


Subject(s)
Fullerenes/chemistry , Models, Chemical , Titanium/chemistry , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL