Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 16(23)2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38068120

ABSTRACT

The first hyperpolarizability of graphene quantum dots (GQDs) suspended in water was determined using the hyper-Rayleigh scattering (HRS) technique. To the best of our knowledge, this is the first application of the HRS technique to characterize GQDs. Two commercial GQDs (Acqua-Cyan and Acqua-Green) with different compositions were studied. The HRS experiments were performed with an excitation laser at 1064 nm. The measured hyperpolarizabilities were (1.0±0.1)×10-27 esu and (0.9±0.1)×10-27 esu for Acqua-Cyan and Acqua-Green, respectively. The results were used to estimate the hyperpolarizability per nanosheet obtained by assuming that each GQD has five nanosheets with 0.3 nm thickness. The two-level model, used to calculate the static hyperpolarizability per nanosheet, provides values of (2.4±0.1)×10-28 esu (Acqua-Cyan) and (0.5±0.1)×10-28 esu (Aqua-Green). The origin of the nonlinearity is discussed on the basis of polarized resolved HRS experiments, and electric quadrupolar behavior with a strong dependence on surface effects. The nontoxic characteristics and order of magnitude indicate that these GQDs may be useful for biological microscopy imaging.

2.
Nanomaterials (Basel) ; 13(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37570584

ABSTRACT

The nonlinear optical (NLO) response of photonic materials plays an important role in the understanding of light-matter interaction as well as pointing out a diversity of photonic and optoelectronic applications. Among the recently studied materials, 2D-LTMDs (bi-dimensional layered transition metal dichalcogenides) have appeared as a beyond-graphene nanomaterial with semiconducting and metallic optical properties. In this article, we review most of our work in studies of the NLO response of a series of 2D-LTMDs nanomaterials in suspension, using six different NLO techniques, namely hyper Rayleigh scattering, Z-scan, photoacoustic Z-scan, optical Kerr gate, and spatial self-phase modulation, besides the Fourier transform nonlinear optics technique, to infer the nonlinear optical response of semiconducting MoS2, MoSe2, MoTe2, WS2, semimetallic WTe2, ZrTe2, and metallic NbS2 and NbSe2. The nonlinear optical response from a thermal to non-thermal origin was studied, and the nonlinear refraction index and nonlinear absorption coefficient, where present, were measured. Theoretical support was given to explain the origin of the nonlinear responses, which is very dependent on the spectro-temporal regime of the optical source employed in the studies.

3.
J Phys Chem B ; 127(31): 7018-7026, 2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37498736

ABSTRACT

We synthesized the mesoionic compound 2-(4-chlorophenyl)-3-methyl-4-(4-methylphenyl)-1,3-thiazole-5-thiolate and measured its refractive and absorptive nonlinear optical response in different temporal and spectral regimes. The experiments were performed by using the Z-scan technique with two pulsed light sources: the second harmonic (at 532 nm) of a mode-locked and Q-switched Nd-YAG laser (100 ps, 10 Hz) and a Ti: Sapphire laser system (100 fs, 1 kHz) operating at 800 nm. The observation and characterization of nonlinear refraction, two- and three-photon absorption, and excited state absorption of the mesoionic compound dissolved in dimethyl sulfoxide, in different concentrations, are presented and discussed with basis on the population redistribution in a three-energy-level model that allows the determination of the parameters which characterize the nonlinear response.

4.
Appl Opt ; 62(8): C59-C63, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-37133059

ABSTRACT

Random lasing is reported for the first time, to our knowledge, in neodymium doped alumina lead-germanate (GPA) glass powder. The samples were fabricated by a conventional melt-quenching technique at room temperature, and x-ray diffraction was used to confirm the amorphous structure of the glass. Powders with average grain size of about 2 µm were prepared by grinding the glass samples and using sedimentation in isopropyl alcohol to remove the coarsest particles. The sample was excited using an optical parametric oscillator tuned to 808 nm, in resonance with the neodymium ion (N d 3+) transition 4 I 9/2→{4 F 5/2,2 H 9/2}. Random laser (RL) emission at 1060 nm (N d 3+ transition: 4 F 3/2→4 I 11/2) was observed for an energy fluence excitation threshold (E F E r m t h ) of about 0.3m J/m m 2. Above the E F E t h , a short RL pulse in the nanosecond range is observed, corroborating the lasing process. Contrary to what one might suppose, the use of large quantities of neodymium oxide (10% wt. of N d 2 O 3) in the GPA glass, which leads to luminescence concentration quenching (LCQ), is not a disadvantage, once stimulated emissions (RL emission) occur faster than the nonradiative energy-transfer time among N d 3+ ions responsible for the LCQ.

5.
Appl Opt ; 62(8): C122-C127, 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-37133067

ABSTRACT

Multilayer graphene (MLG) thin films were produced by a sputtering technique on a cobalt buffer-layer prepared at 500°C and thermal annealed after the deposition. The transformation of amorphous carbon (C) to graphene occurs by diffusion of C atoms through the catalyst metal; then the C atoms dissolved in the metal are nucleated as graphene. The thicknesses of cobalt and MLG thin films were 55 and 54 nm, respectively, obtained by atomic force microscopy (AFM). Raman spectroscopy showed that the ratio between the Raman bands 2D and G (I 2D /I G ) was 0.4 for the graphene thin film that was annealed at 750°C for 25 min, indicating that the films obtained are MLG. The Raman results were corroborated by transmission electron microscopy analysis. AFM was used to determine the Co and C film thickness and roughness. Transmittance measurements at 980 nm as a function of input power from a continuous-wave diode laser showed that the obtained MLG films present large nonlinear absorption and can be used as optical limiters.

6.
Sci Rep ; 12(1): 19438, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36376425

ABSTRACT

We investigated the random lasing process and Replica Symmetry Breaking (RSB) phenomenon in neodymium ions (Nd3+) doped lead-germanate glass-ceramics (GCs) containing MgO. Glass samples were fabricated by conventional melt-quenching technique and the GCs were obtained by carefully devitrifying the parent glasses at 830 °C for different time intervals. The partial crystallization of the parent glasses was verified by X-ray diffraction. Photoluminescence (PL) enhancement of [Formula: see text] 500% relative to the parent glasses was observed for samples with a higher crystallinity degree (annealed during 5 h). Powders with grains having average size of 2 µm were prepared by griding the GCs samples. The Random Laser (RL) was excited at 808 nm, in resonance with the Nd3+ transition 4I9/2 → {4F5/2, 2H9/2}, and emitted at 1068 nm (transition 4F3/2 → 4I11/2). The RL performance was clearly enhanced for the sample with the highest crystallinity degree whose energy fluence excitation threshold (EFEth) was 0.25 mJ/mm2. The enhanced performance is attributed to the residence-time growth of photons inside the sample and the higher quantum efficiency of Nd3+ incorporated within the microcrystals, where radiative losses are reduced. Moreover, the phenomenon of Replica Symmetry Breaking (RSB), characteristic of a photonic-phase-transition, was detected by measuring the intensity fluctuations of the RL emission. The Parisi overlap parameter was determined for all samples, for excitation below and above the EFEth. This is the first time, for the best of the authors knowledge, that RL emission and RSB are reported for a glass-ceramic system.

7.
Opt Lett ; 46(2): 226-229, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33448993

ABSTRACT

The effective fifth-order susceptibility, ${\chi}_{\rm eff}^{(5)}$, of two-dimensional (2D) semiconducting layered transition metal dichalcogenide (LTMD) molybdenum disulfide (${\rm MoS}_2$) is reported here for the first time, to the best of our knowledge. Using the $ Z $-scan technique with a laser operating at 800 nm, 1 kHz, 100 fs, we investigated the nonlinear behavior of ${\rm MoS}_2$ suspended in acetonitrile (concentration, 70 µg/ml). The effective nonlinear refractive index ${{n}_{4,{eff}}} = - ({7.6 \pm 0.5}) \times {10^{- 26}}\; {{\rm cm}^4}/{{\rm W}^2}$, proportional to ${\rm Re}{\chi}_{\rm eff}^{(5)}$, was measured for monolayer ${\rm MoS}_2$ nanoflakes, prepared by a modified redox exfoliation method. We also determined the value of the nonlinear refractive index ${{n}_2} = + ({4.8 \pm 0.5}) \times {10^{- 16}}\;{{\rm cm}^2}/{\rm W}$, which is related to the material's effective third-order optical susceptibility real part, ${Re\chi}_{\rm eff}^{(3)}$. For comparison, we also investigated the nonlinear response of tungsten disulfide (${\rm WS}_2$) monolayers, prepared by the same method and suspended in acetonitrile (concentration, 40 µg/ml), which only exhibited the third-order nonlinear effect in the same intensity range, up to ${120}\;{{{\rm GW}/{\rm cm}}^2}$. Nonlinear absorption was not observed in either ${\rm MoS}_2$ or ${\rm WS}_2$.

8.
Phys Chem Chem Phys ; 22(47): 27845-27849, 2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33245737

ABSTRACT

Nonlinear optical characterization of nanostructured layered transition metal dichalcogenides (LTMDs) is of fundamental interest for basic knowledge and applied purposes. In particular, second-order optical nonlinearities are the basis for second harmonic generation as well as sum or difference frequency generation and have been studied in some 2D TMDs, especially in those with a semiconducting character. Here we report, for the first time, on the second-order nonlinearity of the semi-metallic ZrTe2 monolayer in acetonitrile suspension (concentration of 4.9 × 1010 particles per cm3), synthesized via a modified redox exfoliation method and characterized using the Hyper-Rayleigh scattering technique in the nanosecond regime. The orientation-averaged first-hyperpolarizability was found to be ß(2ω) = (7.0 ± 0.3) × 10-24 esu per ZrTe2 monolayer flake, the largest reported so far. Polarization-resolved measurements were performed in the monolayer suspension and indicate the dipolar origin of the generated incoherent second harmonic wave.

9.
Nanoscale ; 12(29): 15706-15710, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32672308

ABSTRACT

We demonstrate random laser emission from Rhodamine 6G with ZrTe2 transition metal dichalcogenide (TMD) as nanoscatters, both in powder and 2D nanoflakes liquid suspension. The 2D semimetal ZrTe2 was synthesized by a modified redox exfoliation method to provide single layer TMD, which was employed for the first time as the scatter medium to provide feedback in an organic gain medium random laser. In order to exploit random laser emission and its threshold value, replica symmetry breaking leading to a photonic paramagnetic to photonic spin glass transition in both 2D and 3D (powder) ZrTe2 was demonstrated. One important aspect of mixing organic dyes with ZrTe2 is that there is no chemical reaction leading to dye degradation, demonstrated by operating over more than 2 hours of pulsed (5 Hz) random laser emission.

10.
Appl Opt ; 59(13): D155-D162, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32400638

ABSTRACT

The interplay between gain and scattering of light propagating in disordered media allows operation of random lasers (RLs)-lasers without conventional optical cavities. In the present paper, we review our recent contributions in this area, which include the demonstration of self-second-harmonic and self-sum-frequency generation, the characterization of Lévy's statistics of the output intensity fluctuations, and replica symmetry breaking (analogue to the spin-glass phase transition) by RLs based on nanocrystals containing trivalent neodymium ions.

11.
Sci Rep ; 9(1): 11765, 2019 08 13.
Article in English | MEDLINE | ID: mdl-31409828

ABSTRACT

We report an alternative random laser (RL) architecture based on a flexible and ZnO-enriched cellulose acetate (CA) fiber matrix prepared by electrospinning. The electrospun fibers, mechanically reinforced by polyethylene oxide and impregnated with zinc oxide powder, were applied as an adsorbent surface to incorporate plasmonic centers (silver nanoprisms). The resulting structures - prepared in the absence (CA-ZnO) and in the presence of silver nanoparticles (CA-ZnO-Ag) - were developed to support light excitation, guiding and scattering prototypes of a RL. Both materials were excited by a pulsed (5 Hz, 5 ns) source at 355 nm and their fluorescence emission monitored at 387 nm. The results suggest that the addition of silver nanoprisms to the ZnO- enriched fiber matrix allows large improvement of the RL performance due to the plasmon resonance of the silver nanoprisms, with ~80% reduction in threshold energy. Besides the intensity and spectral analysis, the RL characterization included its spectral and intensity angular dependences. Bending the flexible RL did not affect the spectral characteristics of the device. No degradation was observed in the random laser emission for more than 10,000 shots of the pump laser.

12.
Dalton Trans ; 48(18): 6261-6272, 2019 May 07.
Article in English | MEDLINE | ID: mdl-30985846

ABSTRACT

Phosphotellurite based glasses have interesting features such as low characteristic temperatures, high glass forming ability, high thermal stability against crystallization and a broad transparency window from ultraviolet (UV) to near-infrared (NIR), which makes them promising materials for photonic applications. In this work, phosphotellurite binary glasses, having a composition (100 - x)TeO2 - xBa(PO3)2 with x varying from 1 to 20 mol%, were synthesized by the conventional melt-quenching method in covered gold crucibles under air. Optical, physical and structural properties of the new glass samples were investigated by differential scanning calorimetry, X-ray diffraction, Raman spectroscopy, transmission electron microscopy, linear optical absorption from UV to NIR, IR transmittance, and optical limiting experiments. Transparent glass-ceramics in the visible range were obtained for phosphotellurite samples containing 2, 4 and 6 mol% of Ba(PO3)2 and the phase crystallization was investigated through Rietveld analysis and transmission electron microscopy. The incorporation of Ba(PO3)2 into the TeO2 network drastically increases the thermal stability against devitrification and helps to shift the infrared multiphonon absorption edge to longer wavelengths. Nonlinear measurements performed with a picosecond laser at 532 nm indicate large effective nonlinear absorption coefficients for all samples. In summary, the dependence of the spectroscopic properties on the compositions of the samples revealed promising transparent glass and glass-ceramics for photonic applications.

13.
Opt Lett ; 43(20): 5037, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30320812

ABSTRACT

This erratum corrects an error in Fig. 4 of Opt. Lett. 39, 5046 (2014).

14.
Opt Express ; 26(16): 20298-20305, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119341

ABSTRACT

The capability to dynamically control the nonlinear refractive index of plasmonic suspensions may enable innovative nonlinear sensing and signaling nanotechnologies. Here, we experimentally determine the effective nonlinear refractive index for gold nanorods suspended in an index matching oil aligned using electric fields, demonstrating an approach to modulate the nonlinear optical properties of the suspension. The nonlinear optical experiments were carried out using a Hartmann-Shack wavefront aberrometer in a collimated beam configuration with a high repetition rate femtosecond laser. The suspensions were probed at 800 nm, overlapping with the long-axis absorption peak of the nanorods. We find that the effective nonlinear refractive index of the gold nanorods suspension depends linearly on the orientational order parameter, S, which can be understood by a thermally induced nonlinear response. We also show the magnitude of the nonlinear response can be varied by ∼ 60%.

15.
Phys Rev Lett ; 119(16): 163902, 2017 Oct 20.
Article in English | MEDLINE | ID: mdl-29099224

ABSTRACT

We demonstrate the replica symmetry breaking (RSB) phenomenon in the spontaneous mode-locking regime of a multimode Q-switched Nd:YAG laser. The underlying mechanism is quite distinct from that of the RSB recently observed in random lasers. Here, there is no random medium and the phase is not glassy with incoherently oscillating modes as in random lasers. Instead, in each pulse a specific subset of longitudinal modes are activated in a nondeterministic way, whose coherent oscillation dominates and frustrates the others. The emergence of RSB coincides with the onset of ultrashort pulse generation typical of the spontaneous mode-locking regime, both occurring at the laser threshold. On the other hand, when high losses are introduced, RSB is inhibited and only the amplified stimulated emission with replica symmetry is observed. Our results disclose the only theoretically predicted photonic phase with RSB that remained unobserved so far.

16.
Opt Express ; 25(18): 21049-21067, 2017 Sep 04.
Article in English | MEDLINE | ID: mdl-29041514

ABSTRACT

We report a study of the nonlinear birefringence induced in a metal-dielectric nanocomposite due to the contributions of third- and fifth-order optical nonlinearities. A theoretical model describing the evolution of the light polarization state of a confined laser beam propagating through the nonlinear medium is developed with basis on a pair of coupled dissipative cubic-quintic nonlinear differential equations related to the two orthogonal polarizations of the optical field. As a proof-of-principle experiment we demonstrate the control of the light beam polarization in a silver-nanocolloid by changing the silver nanoparticles volume fraction, f, and the light intensity. A large nonlinear phase-shift (~20π) was observed using a 9 cm long capillary filled with silver nanoparticles suspended in carbon disulfide. Experiments using colloids with 1.0×10-5≤f≤4.5×10-5 and maximum light intensities of tens of MW/cm2 are performed. In addition, we demonstrate that the modulation instability is highly sensitive to the quintic nonlinearity contribution performed showing good agreement with the experimental results.

17.
Opt Lett ; 41(15): 3459-62, 2016 Aug 01.
Article in English | MEDLINE | ID: mdl-27472593

ABSTRACT

Colloidal-based random lasers (RLs) are highly efficient and have been exploited in a wide range of geometries. However, in the particular case of ethanol solutions of rhodamines and TiO2 particles, the RL behavior is quite unstable due to the fast precipitation of the particles. In this Letter, specially designed amorphous TiO2 particles were synthesized by a sol-gel method, preventing the degradation of the RL for long operating lifetimes of over 105 shots. As a consequence, this modified colloidal RL allowed the observation of a clear replica-symmetry-breaking phase transition from the paramagnetic fluorescent to spin-glass RL behavior, which has not been observed in the system with nonfunctionalized TiO2 particles.

18.
Sci Rep ; 6: 27107, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27250647

ABSTRACT

Ultraviolet and blue light were obtained by nonlinear frequency conversion in a random laser (RL) based on Nd0.10Y0.90Al3(BO3)4 nanocrystalline powder. RL operation at 1062 nm, due to the (4)F3/2 → (4)I11/2 transition of neodymium ions (Nd(3+)), was achieved by exciting the Nd(3+) with a tunable beam from 680 to 920 nm covering the ground state absorption transitions to the (4)F9/2, ((4)F7/2,(4)S3/2), ((4)F5/2,(2)H9/2), and (4)F3/2 states. Light from 340 to 460 nm was obtained via the second-harmonic generation of the excitation beam while tunable blue light, from 417 to 486 nm, was generated by self-sum-frequency mixing between the excitation beam and the RL emission.

19.
Sci Rep ; 6: 27987, 2016 06 13.
Article in English | MEDLINE | ID: mdl-27292095

ABSTRACT

Random lasers have been recently exploited as a photonic platform for studies of complex systems. This cross-disciplinary approach opened up new important avenues for the understanding of random-laser behavior, including Lévy-type distributions of strong intensity fluctuations and phase transitions to a photonic spin-glass phase. In this work, we employ the Nd:YBO random laser system to unveil, from a single set of measurements, the physical origin of the complex correspondence between the Lévy fluctuation regime and the replica-symmetry-breaking transition to the spin-glass phase. A novel unexpected finding is also reported: the trend to suppress the spin-glass behavior for high excitation pulse energies. The present description from first principles of this correspondence unfolds new possibilities to characterize other random lasers, such as random fiber lasers, nanolasers and small lasers, which include plasmonic-based, photonic-crystal and bio-derived nanodevices. The statistical nature of the emission provided by random lasers can also impact on their prominent use as sources for speckle-free laser imaging, which nowadays represents one of the most promising applications of random lasers, with expected progress even in cancer research.

20.
Opt Express ; 24(9): 9955-65, 2016 May 02.
Article in English | MEDLINE | ID: mdl-27137605

ABSTRACT

We report on the fabrication of sapphire samples containing platinum nanoparticles (Pt-NPs) and platinum ions (Pt-ions) and the investigation of their third-order nonlinear (NL) optical properties. The presence of Pt-NPs was confirmed by electronic microscopy and by the linear absorption spectrum that shows a localized surface plasmon band centered at 290 nm. A sample without NPs but containing Pt-ions was also studied. The absorptive and refractive contributions to the nonlinearity were studied using the z-scan technique with 100 fs pulses at 800nm. The experiments revealed a NL refractive index, +3.8×10-13 < n2 < +1.3×10-12cm2/W and NL absorption coefficient (ß < 9.3 cm/GW). The results show enhancement of about five orders of magnitude with respect to the NL refractive index of sapphire.

SELECTION OF CITATIONS
SEARCH DETAIL
...