Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 2775, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37188688

ABSTRACT

Heterozygous mutations in the gene encoding RagD GTPase were shown to cause a novel autosomal dominant condition characterized by kidney tubulopathy and cardiomyopathy. We previously demonstrated that RagD, and its paralogue RagC, mediate a non-canonical mTORC1 signaling pathway that inhibits the activity of TFEB and TFE3, transcription factors of the MiT/TFE family and master regulators of lysosomal biogenesis and autophagy. Here we show that RagD mutations causing kidney tubulopathy and cardiomyopathy are "auto- activating", even in the absence of Folliculin, the GAP responsible for RagC/D activation, and cause constitutive phosphorylation of TFEB and TFE3 by mTORC1, without affecting the phosphorylation of "canonical" mTORC1 substrates, such as S6K. By using HeLa and HK-2 cell lines, human induced pluripotent stem cell-derived cardiomyocytes and patient-derived primary fibroblasts, we show that RRAGD auto-activating mutations lead to inhibition of TFEB and TFE3 nuclear translocation and transcriptional activity, which impairs the response to lysosomal and mitochondrial injury. These data suggest that inhibition of MiT/TFE factors plays a key role in kidney tubulopathy and cardiomyopathy syndrome.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , Induced Pluripotent Stem Cells , Humans , Autophagy/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , HeLa Cells , Induced Pluripotent Stem Cells/metabolism , Kidney/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mutation
2.
Nature ; 614(7948): 572-579, 2023 02.
Article in English | MEDLINE | ID: mdl-36697823

ABSTRACT

The transcription factor TFEB is a master regulator of lysosomal biogenesis and autophagy1. The phosphorylation of TFEB by the mechanistic target of rapamycin complex 1 (mTORC1)2-5 is unique in its mTORC1 substrate recruitment mechanism, which is strictly dependent on the amino acid-mediated activation of the RagC GTPase activating protein FLCN6,7. TFEB lacks the TOR signalling motif responsible for the recruitment of other mTORC1 substrates. We used cryogenic-electron microscopy to determine the structure of TFEB as presented to mTORC1 for phosphorylation, which we refer to as the 'megacomplex'. Two full Rag-Ragulator complexes present each molecule of TFEB to the mTOR active site. One Rag-Ragulator complex is bound to Raptor in the canonical mode seen previously in the absence of TFEB. A second Rag-Ragulator complex (non-canonical) docks onto the first through a RagC GDP-dependent contact with the second Ragulator complex. The non-canonical Rag dimer binds the first helix of TFEB with a RagCGDP-dependent aspartate clamp in the cleft between the Rag G domains. In cellulo mutation of the clamp drives TFEB constitutively into the nucleus while having no effect on mTORC1 localization. The remainder of the 108-amino acid TFEB docking domain winds around Raptor and then back to RagA. The double use of RagC GDP contacts in both Rag dimers explains the strong dependence of TFEB phosphorylation on FLCN and the RagC GDP state.


Subject(s)
Lysosomes , Mechanistic Target of Rapamycin Complex 1 , Monomeric GTP-Binding Proteins , Amino Acids/metabolism , Catalytic Domain , Guanosine Diphosphate/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Monomeric GTP-Binding Proteins/metabolism , Phosphorylation , Protein Multimerization , Regulatory-Associated Protein of mTOR/metabolism , Signal Transduction
3.
J Cell Biol ; 221(5)2022 05 02.
Article in English | MEDLINE | ID: mdl-35404386

ABSTRACT

Target-of-rapamycin complex 1 resides on lysosomes/vacuoles and additionally on signaling endosomes. Gao et al. (2022. J. Cell Biol.https://doi.org/10.1083/jcb.202109084) set out to define the molecular identity of signaling endosomes, along with players required for the formation and maintenance of this endosomal subpopulation.


Subject(s)
Endosomes , Mechanistic Target of Rapamycin Complex 1 , Saccharomyces cerevisiae Proteins , Signal Transduction , Transcription Factors , Vacuoles , Lysosomes , Mechanistic Target of Rapamycin Complex 1/genetics , Saccharomyces cerevisiae
4.
Sci Rep ; 11(1): 2261, 2021 01 26.
Article in English | MEDLINE | ID: mdl-33500503

ABSTRACT

The diagnosis of COVID-19 relies on the direct detection of SARS-CoV-2 RNA in respiratory specimens by RT-PCR. The pandemic spread of the disease caused an imbalance between demand and supply of materials and reagents needed for diagnostic purposes including swab sets. In a comparative effectiveness study, we conducted serial follow-up swabs in hospitalized laboratory-confirmed COVID-19 patients. We assessed the diagnostic performance of an in-house system developed according to recommendations by the US CDC. In a total of 96 serial swabs, we found significant differences in the accuracy of the different swab systems to generate a positive result in SARS-CoV-2 RT-PCR, ranging from around 50 to 80%. Of note, an in-house swab system was superior to most commercially available sets as reflected by significantly lower Ct values of viral genes. Thus, a simple combination of broadly available materials may enable diagnostic laboratories to bypass global limitations in the supply of swab sets.


Subject(s)
COVID-19 Nucleic Acid Testing/instrumentation , COVID-19/diagnosis , Disposable Equipment/supply & distribution , Molecular Diagnostic Techniques/instrumentation , SARS-CoV-2/isolation & purification , COVID-19 Nucleic Acid Testing/methods , Clinical Laboratory Techniques , Diagnostic Tests, Routine , Genes, Viral , Humans , Molecular Diagnostic Techniques/methods , Quality Control , RNA, Viral/analysis , Reproducibility of Results , Resource Allocation , Specimen Handling
5.
Nature ; 585(7826): 597-602, 2020 09.
Article in English | MEDLINE | ID: mdl-32612235

ABSTRACT

The mechanistic target of rapamycin complex 1 (mTORC1) is a key metabolic hub that controls the cellular response to environmental cues by exerting its kinase activity on multiple substrates1-3. However, whether mTORC1 responds to diverse stimuli by differentially phosphorylating specific substrates is poorly understood. Here we show that transcription factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy4,5, is phosphorylated by mTORC1 via a substrate-specific mechanism that is mediated by Rag GTPases. Owing to this mechanism, the phosphorylation of TFEB-unlike other substrates of mTORC1, such as S6K and 4E-BP1- is strictly dependent on the amino-acid-mediated activation of RagC and RagD GTPases, but is insensitive to RHEB activity induced by growth factors. This mechanism has a crucial role in Birt-Hogg-Dubé syndrome, a disorder that is caused by mutations in the RagC and RagD activator folliculin (FLCN) and is characterized by benign skin tumours, lung and kidney cysts and renal cell carcinoma6,7. We found that constitutive activation of TFEB is the main driver of the kidney abnormalities and mTORC1 hyperactivity in a mouse model of Birt-Hogg-Dubé syndrome. Accordingly, depletion of TFEB in kidneys of these mice fully rescued the disease phenotype and associated lethality, and normalized mTORC1 activity. Our findings identify a mechanism that enables differential phosphorylation of mTORC1 substrates, the dysregulation of which leads to kidney cysts and cancer.


Subject(s)
Birt-Hogg-Dube Syndrome/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/chemistry , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/deficiency , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Birt-Hogg-Dube Syndrome/genetics , Birt-Hogg-Dube Syndrome/pathology , Cell Line , Disease Models, Animal , Enzyme Activation , HeLa Cells , Humans , Kidney Neoplasms/metabolism , Kidney Neoplasms/pathology , Mice , Mice, Knockout , Monomeric GTP-Binding Proteins/metabolism , Phosphorylation , Protein Binding , Proto-Oncogene Proteins/deficiency , Proto-Oncogene Proteins/genetics , Ras Homolog Enriched in Brain Protein/metabolism , Substrate Specificity , Tuberous Sclerosis Complex 2 Protein/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics
6.
Traffic ; 21(1): 60-75, 2020 01.
Article in English | MEDLINE | ID: mdl-31808235

ABSTRACT

Lysosomes are key cellular catabolic centers that also perform fundamental metabolic, signaling and quality control functions. Lysosomes are not static and they respond dynamically to intra- and extracellular stimuli triggering changes in organelle numbers, size and position. Such physical changes have a strong impact on lysosomal activity ultimately influencing cellular homeostasis. In this review, we summarize the current knowledge on lysosomal size regulation, on its physiological role(s) and association to several disease conditions.


Subject(s)
Lysosomes , Signal Transduction , Autophagy , Homeostasis
7.
Traffic ; 19(8): 639-649, 2018 08.
Article in English | MEDLINE | ID: mdl-29673018

ABSTRACT

Immunogold labeling of permeabilized whole-mount cells or thin-sectioned material is widely used for the subcellular localization of biomolecules at the high spatial resolution of electron microscopy (EM). Those approaches are well compatible with either 3-dimensional (3D) reconstruction of organelle morphology and antigen distribution or with rapid cryofixation-but not easily with both at once. We describe here a specimen preparation and labeling protocol for animal cell cultures, which represents a novel blend of specifically adapted versions of established techniques. It combines the virtues of reliably preserved organelle ultrastructure, as trapped by rapid freezing within milliseconds followed by freeze-substitution and specimen rehydration, with the advantages of robust labeling of intracellular constituents in 3D through means of pre-embedding NANOGOLD-silver immunocytochemistry. So obtained thin and semi-thick epoxy resin sections are suitable for transmission EM imaging, as well as tomographic reconstruction and modeling of labeling patterns in the 3D cellular context.


Subject(s)
Microscopy, Electron, Transmission/methods , Microscopy, Immunoelectron/methods , Tomography/methods , Animals , Antigens/chemistry , Caco-2 Cells , Cryopreservation/methods , Epoxy Compounds/chemistry , Freezing , Gold/chemistry , HeLa Cells , Humans , Immunohistochemistry , Nanoparticles/chemistry , Pressure , Silver/chemistry
8.
J Cell Biol ; 216(12): 4199-4215, 2017 12 04.
Article in English | MEDLINE | ID: mdl-28993467

ABSTRACT

Signaling from lysosomes controls cellular clearance and energy metabolism. Lysosomal malfunction has been implicated in several pathologies, including neurodegeneration, cancer, infection, immunodeficiency, and obesity. Interestingly, many functions are dependent on the organelle position. Lysosomal motility requires the integration of extracellular and intracellular signals that converge on a competition between motor proteins that ultimately control lysosomal movement on microtubules. Here, we identify a novel upstream control mechanism of Arl8b-dependent lysosomal movement toward the periphery of the cell. We show that the C-terminal domain of lyspersin, a subunit of BLOC-1-related complex (BORC), is essential and sufficient for BORC-dependent recruitment of Arl8b to lysosomes. In addition, we establish lyspersin as the linker between BORC and late endosomal/lysosomal adaptor and mitogen activated protein kinase and mechanistic target of rapamycin activator (LAMTOR) complexes and show that epidermal growth factor stimulation decreases LAMTOR/BORC association, thereby promoting BORC- and Arl8b-dependent lysosomal centrifugal transport.


Subject(s)
ADP-Ribosylation Factors/metabolism , Carrier Proteins/metabolism , Endosomes/metabolism , Lysosomes/metabolism , Multiprotein Complexes/metabolism , Nerve Tissue Proteins/metabolism , ADP-Ribosylation Factors/genetics , Carrier Proteins/genetics , Endosomes/drug effects , Endosomes/ultrastructure , Epidermal Growth Factor/pharmacology , Gene Expression Regulation , HEK293 Cells , HeLa Cells , Humans , Intracellular Signaling Peptides and Proteins , Lysosomes/drug effects , Lysosomes/ultrastructure , Microtubules/drug effects , Microtubules/metabolism , Microtubules/ultrastructure , Movement , Multiprotein Complexes/genetics , Nerve Tissue Proteins/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Transport , Signal Transduction
9.
Science ; 358(6361): 377-381, 2017 10 20.
Article in English | MEDLINE | ID: mdl-28935770

ABSTRACT

The LAMTOR [late endosomal and lysosomal adaptor and MAPK (mitogen-activated protein kinase) and mTOR (mechanistic target of rapamycin) activator] complex, also known as "Ragulator," controls the activity of mTOR complex 1 (mTORC1) on the lysosome. The crystal structure of LAMTOR consists of two roadblock/LC7 domain-folded heterodimers wrapped and apparently held together by LAMTOR1, which assembles the complex on lysosomes. In addition, the Rag guanosine triphosphatases (GTPases) associated with the pentamer through their carboxyl-terminal domains, predefining the orientation for interaction with mTORC1. In vitro reconstitution and experiments with site-directed mutagenesis defined the physiological importance of LAMTOR1 in assembling the remaining components to ensure fidelity of mTORC1 signaling. Functional data validated the effect of two short LAMTOR1 amino acid regions in recruitment and stabilization of the Rag GTPases.


Subject(s)
Carrier Proteins/chemistry , Lysosomes/enzymology , Mechanistic Target of Rapamycin Complex 1/metabolism , Carrier Proteins/ultrastructure , Crystallography, X-Ray , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/ultrastructure , Humans , Intracellular Signaling Peptides and Proteins , Protein Domains , Signal Transduction
10.
Cold Spring Harb Protoc ; 2015(12): pdb.prot083451, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26631120

ABSTRACT

Immortalized macrophage lines and primary macrophages display the ability to internalize small latex beads through the endocytic pathway. This protocol describes a simple and robust method for separating endocytic organelles from macrophages on a sucrose gradient, taking advantage of the significantly lower density of the organelles containing latex beads compared with other intracellular organelles. The latex beads are retained in the endosomes as they mature; therefore, harvesting cells at different time points after internalization permits the purification of different organelle fractions, particularly early and late endosomes.


Subject(s)
Cell Fractionation/methods , Centrifugation, Density Gradient/methods , Endosomes/chemistry , Macrophages/chemistry , Microspheres , Animals , Humans
11.
Cold Spring Harb Protoc ; 2015(12): pdb.top074443, 2015 Dec 02.
Article in English | MEDLINE | ID: mdl-26631131

ABSTRACT

Proteomic analysis of early and late endosomes has been constrained by the limited purity of the endosomal fractions that can be achieved by biochemical methods. Here we briefly review endocytic pathways, and then introduce fractionation strategies that have been used to improve the purity of isolated endosomes. In addition, we describe innovative proteomics analysis methods that have been shown to partially circumvent the limitations found in the enrichment steps.


Subject(s)
Cell Fractionation/methods , Endosomes/chemistry , Proteome/analysis , Proteome/isolation & purification , Animals , Humans
12.
Cold Spring Harb Protoc ; 2015(11): 1009-12, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26527761

ABSTRACT

Homogenization is the name given to the methodological steps necessary for releasing organelles and other cellular constituents as a free suspension of intact individual components. Most homogenization procedures used for mammalian cells (e.g., cavitation pump and Dounce homogenizer) rely on mechanical force to break the plasma membrane and may be supplemented with osmotic or temperature alterations to facilitate membrane disruption. In this protocol, we describe a syringe-based homogenization method that does not require specialized equipment, is easy to handle, and gives reproducible results. The method may be adapted for cells that require hypotonic shock before homogenization. We routinely use it as part of our workflow to isolate endocytic organelles from mammalian cells.


Subject(s)
Cell Fractionation/methods , Animals , Cell Fractionation/instrumentation , Cells, Cultured , Humans , Mammals , Reproducibility of Results , Syringes
13.
Cold Spring Harb Protoc ; 2015(11): 1013-6, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26527762

ABSTRACT

Density gradient centrifugation is a common method for separating intracellular organelles. During centrifugation, organelles float or sediment until they reach their isopycnic position within the gradient. The density of an organelle depends on its content, size, shape, and the lipid:protein ratio. The degree of separation between different organelles will therefore be highly dependent on how different their isopycnic points are in a given buffer. Separation will also depend on the medium used to prepare the gradient, whether it is sucrose (the most common) or an alternative. Here we describe the use of both continuous and discontinuous (step) gradients to isolate endocytic organelles.


Subject(s)
Cell Fractionation/methods , Centrifugation, Density Gradient/methods , Endosomes , Animals , Cells, Cultured , Humans , Mammals
14.
Traffic ; 16(6): 617-34, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25677580

ABSTRACT

The late endosomal adaptor protein LAMTOR2/p14 is essential for tissue homeostasis by controlling MAPK and mTOR signaling, which in turn regulate cell growth and proliferation, migration and spreading. Moreover, LAMTOR2 critically controls architecture and function of the endocytic system, including epidermal growth factor receptor (EGFR) degradation in lysosomes, positioning of late endosomes and defense against intracellular pathogens. Here we describe the multifaceted ultrastructural phenotype of the endo/lysosomal system of LAMTOR2-deficient mouse embryonic fibroblasts. Quantitative (immuno-)electron microscopy of cryo-fixed samples revealed significantly reduced numbers of recycling tubules emanating from maturing multivesicular bodies (MVB). Instead, a distinct halo of vesicles surrounded MVB, tentatively interpreted as detached, jammed recycling tubules. These morphological changes in LAMTOR2-deficient cells correlated with the presence of growth factors (e.g. EGF), but were similarly induced in control cells by inactivating mTOR. Furthermore, proper transferrin receptor trafficking and recycling were apparently dependent on an intact LAMTOR complex. Finally, a severe imbalance in the relative proportions of endo/lysosomes was found in LAMTOR2-deficient cells, resulting from increased amounts of mature MVB and (autophago)lysosomes. These observations suggest that the LAMTOR/Ragulator complex is required not only for maintaining the homeostasis of endo/lysosomal subpopulations but also contributes to the proper formation of MVB-recycling tubules, and regulation of membrane/cargo recycling from MVB.


Subject(s)
Endosomes/metabolism , Lysosomes/metabolism , Proteins/metabolism , Animals , Cell Line , Endosomes/ultrastructure , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Lysosomes/ultrastructure , Mice , Multivesicular Bodies/metabolism , Multivesicular Bodies/ultrastructure , Protein Transport , Proteins/genetics
15.
Nature ; 519(7544): 477-81, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25561175

ABSTRACT

Cell growth and proliferation are tightly linked to nutrient availability. The mechanistic target of rapamycin complex 1 (mTORC1) integrates the presence of growth factors, energy levels, glucose and amino acids to modulate metabolic status and cellular responses. mTORC1 is activated at the surface of lysosomes by the RAG GTPases and the Ragulator complex through a not fully understood mechanism monitoring amino acid availability in the lysosomal lumen and involving the vacuolar H(+)-ATPase. Here we describe the uncharacterized human member 9 of the solute carrier family 38 (SLC38A9) as a lysosomal membrane-resident protein competent in amino acid transport. Extensive functional proteomic analysis established SLC38A9 as an integral part of the Ragulator-RAG GTPases machinery. Gain of SLC38A9 function rendered cells resistant to amino acid withdrawal, whereas loss of SLC38A9 expression impaired amino-acid-induced mTORC1 activation. Thus SLC38A9 is a physical and functional component of the amino acid sensing machinery that controls the activation of mTOR.


Subject(s)
Amino Acid Transport Systems/metabolism , Amino Acids/metabolism , Lysosomes/metabolism , Multiprotein Complexes/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Cell Line , Humans , Mechanistic Target of Rapamycin Complex 1 , Mice , Monomeric GTP-Binding Proteins/metabolism , Nucleotides/metabolism
16.
J Cell Biol ; 205(4): 525-40, 2014 May 26.
Article in English | MEDLINE | ID: mdl-24841562

ABSTRACT

Cell migration is mediated by the dynamic remodeling of focal adhesions (FAs). Recently, an important role of endosomal signaling in regulation of cell migration was recognized. Here, we show an essential function for late endosomes carrying the p14-MP1 (LAMTOR2/3) complex in FA dynamics. p14-MP1-positive endosomes move to the cell periphery along microtubules (MTs) in a kinesin1- and Arl8b-dependent manner. There they specifically target FAs to regulate FA turnover, which is required for cell migration. Using genetically modified fibroblasts from p14-deficient mice and Arl8b-depleted cells, we demonstrate that MT plus end-directed traffic of p14-MP1-positive endosomes triggered IQGAP1 disassociation from FAs. The release of IQGAP was required for FA dynamics. Taken together, our results suggest that late endosomes contribute to the regulation of cell migration by transporting the p14-MP1 scaffold complex to the vicinity of FAs.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Movement/physiology , Endosomes/metabolism , Focal Adhesions/metabolism , Proteins/metabolism , ADP-Ribosylation Factors/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line , Fibroblasts/cytology , HeLa Cells , Humans , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Molecular Sequence Data , NIH 3T3 Cells , Proteins/genetics , Signal Transduction/physiology , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/metabolism
17.
PLoS One ; 9(4): e95863, 2014.
Article in English | MEDLINE | ID: mdl-24752675

ABSTRACT

LAMTOR2 (p14), a part of the larger LAMTOR/Ragulator complex, plays a crucial role in EGF-dependent activation of p42/44 mitogen-activated protein kinases (MAPK, ERK1/2). In this study, we investigated the role of LAMTOR2 in nerve growth factor (NGF)-mediated neuronal differentiation. Stimulation of PC12 (rat adrenal pheochromocytoma) cells with NGF is known to activate the MAPK. Pharmacological inhibition of MEK1 as well as siRNA-mediated knockdown of both p42 and p44 MAPK resulted in inhibition of neurite outgrowth. Contrary to expectations, siRNA-mediated knockdown of LAMTOR2 effectively augmented neurite formation and neurite length of PC12 cells. Ectopic expression of a siRNA-resistant LAMTOR2 ortholog reversed this phenotype back to wildtype levels, ruling out nonspecific off-target effects of this LAMTOR2 siRNA approach. Mechanistically, LAMTOR2 siRNA treatment significantly enhanced NGF-dependent MAPK activity, and this effect again was reversed upon expression of the siRNA-resistant LAMTOR2 ortholog. Studies of intracellular trafficking of the NGF receptor TrkA revealed a rapid colocalization with early endosomes, which was modulated by LAMTOR2 siRNA. Inhibition of LAMTOR2 and concomitant destabilization of the remaining members of the LAMTOR complex apparently leads to a faster release of the TrkA/MAPK signaling module and nuclear increase of activated MAPK. These results suggest a modulatory role of the MEK1 adapter protein LAMTOR2 in NGF-mediated MAPK activation required for induction of neurite outgrowth in PC12 cells.


Subject(s)
Mitogen-Activated Protein Kinases/metabolism , Nerve Growth Factor/metabolism , Proteins/metabolism , Animals , Cell Differentiation/physiology , Endosomes/metabolism , Kinetics , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , Mitogen-Activated Protein Kinases/genetics , Nerve Growth Factor/genetics , PC12 Cells , Proteins/genetics , Rats , Reverse Transcriptase Polymerase Chain Reaction
18.
J Biol Chem ; 288(25): 18228-42, 2013 Jun 21.
Article in English | MEDLINE | ID: mdl-23653355

ABSTRACT

LAMTOR3 (MP1) and LAMTOR2 (p14) form a heterodimer as part of the larger Ragulator complex that is required for MAPK and mTOR1 signaling from late endosomes/lysosomes. Here, we show that loss of LAMTOR2 (p14) results in an unstable cytosolic monomeric pool of LAMTOR3 (MP1). Monomeric cytoplasmic LAMTOR3 is rapidly degraded in a proteasome-dependent but lysosome-independent manner. Mutational analyses indicated that the turnover of the protein is dependent on ubiquitination of several lysine residues. Similarly, other Ragulator subunits, LAMTOR1 (p18), LAMTOR4 (c7orf59), and LAMTOR5 (HBXIP), are degraded as well upon the loss of LAMTOR2. Thus the assembly of the Ragulator complex is monitored by cellular quality control systems, most likely to prevent aberrant signaling at the convergence of mTOR and MAPK caused by a defective Ragulator complex.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Adaptor Proteins, Signal Transducing/metabolism , Proteasome Endopeptidase Complex/metabolism , Protein Multimerization , Adaptor Proteins, Signal Transducing/genetics , Animals , Blotting, Western , Cells, Cultured , Embryo, Mammalian/cytology , Endosomes/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Knockout , Microscopy, Confocal , Protein Stability , Proteins/genetics , Proteins/metabolism , Proteolysis , Reverse Transcriptase Polymerase Chain Reaction , Ubiquitin/metabolism
19.
Proc Natl Acad Sci U S A ; 101(30): 10984-9, 2004 Jul 27.
Article in English | MEDLINE | ID: mdl-15263099

ABSTRACT

Signaling pathways in eukaryotic cells are often controlled by the formation of specific signaling complexes, which are coordinated by scaffold and adaptor proteins. Elucidating their molecular architecture is essential to understand the spatial and temporal regulation of cellular signaling. p14 and MP1 form a tight (K(d) = 12.8 nM) endosomal adaptor/scaffold complex, which regulates mitogen-activated protein kinase (MAPK) signaling. Here, we present the 1.9-A crystal structure of a biologically functional p14/MP1 complex. The overall topology of the individual MP1 and p14 proteins is almost identical, having a central five-stranded beta-sheet sandwiched between a two-helix and a one-helix layer. Formation of the p14/MP1 heterodimer proceeds by beta-sheet augmentation and yields a unique, almost symmetrical, complex with several potential protein-binding sites on its surface. Mutational analysis allowed identification of the p14 endosomal adaptor motif, which seems to orient the complex relative to the endosomal membrane. Two highly conserved and hydrophobic protein-binding sites are located on the opposite "cytoplasmic" face of the p14/MP1 heterodimer and might therefore function as docking sites for the target proteins extracellular regulated kinase (ERK) 1 and MAPK/ERK kinase 1. Furthermore, detailed sequence analyses revealed that MP1/p14, together with profilins, define a protein superfamily of small subcellular adaptor proteins, named ProflAP. Taken together, the presented work provides insight into the spatial regulation of MAPK signaling, illustrating how p14 and MP1 collaborate as an endosomal adaptor/scaffold complex.


Subject(s)
Carrier Proteins/chemistry , Carrier Proteins/metabolism , Endosomes/physiology , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Mitogen-Activated Protein Kinases/metabolism , Proteins , Animals , Cell Line , Cloning, Molecular , Cricetinae , Crystallography, X-Ray/methods , Endosomes/enzymology , HeLa Cells , Humans , Mice , Models, Molecular , Phosphorylation , Polymerase Chain Reaction , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Deletion , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...