Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nutrients ; 15(16)2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37630833

ABSTRACT

Phenolic compounds can act as a substrate for colonic resident microbiota. Once the metabolites are absorbed and distributed throughout the body, they can have diverse effects on the gut. The objective of this study was to evaluate the effects of the intra-amniotic administration of a chia phenolic extract on intestinal inflammation, intestinal barrier, brush border membrane functionality, intestinal microbiota, and morphology in vivo (Gallus gallus model). Cornish-cross fertile broiler eggs, at 17 days of embryonic incubation, were separated into groups as follows: non-injected (NI; this group did not receive an injection); 18 MΩ H2O (H2O; injected with ultrapure water), and 10 mg/mL (1%) chia phenolic extract (CPE; injected with phenolic extract diluted in ultrapure water). Immediately after hatch (21 days), chickens were euthanized and their small intestine, cecum, and cecum content were collected and analyzed. The chia phenolic extract reduced the tumor necrosis factor-alpha (TNF-α) and increased the sucrose isomaltase (SI) gene expression, reduced the Bifidobacterium and E. coli populations, reduced the Paneth cell diameter, increased depth crypt, and maintained villus height compared to the non-injected control group. Chia phenolic extract may be a promising beneficial compound for improving intestinal health, demonstrating positive changes in intestinal inflammation, functionality, microbiota, and morphology.


Subject(s)
Chickens , Escherichia coli , Animals , Bifidobacterium , Biomarkers , Inflammation/drug therapy
2.
J Nutr Biochem ; 106: 109022, 2022 08.
Article in English | MEDLINE | ID: mdl-35483520

ABSTRACT

Common bean has the potential to improve gut microbiota function due to its chemical composition and content of dietary fiber. This study evaluated the effect of cooked common bean (CCB) flour and its protein hydrolysate as part of a high-fat diet (HFD) added with 6-propyl-2-thiouracil (10 mg/kg/d), an inhibitor of thyroid hormone synthesis, on gut health of BALB/c mice. Forty-eight adult mice were divided into four groups: normal control; HFD; HFD plus CCB flour (346.6 g/kg of diet) (HFBF group) and HFD plus CCB protein hydrolysate (700 mg/Kg/d) (HFPH group). HFBF, but not HFPH, increased cecum weight, and the moisture, and lipids in the excreted feces, compared to control groups. Sequencing of the 16S rRNA gene of the cecal microbiota indicated changes in the beta-diversity between the HFBF and HFPH groups, compared to the normal control. The abundance of Bacteroidetes increased and the Firmicutes/Bacteroidetes ratio decreased in the HFBF compared to control groups. However, HFPH was not able to prevent the damage caused by a HFD to the gut bacterial communities. The OTUs enriched by HFBF were mainly assigned to members of the Muribaculaceae family, which shows potential to improve gut health. The intake of CCB flour improved intestinal health and modulated the composition and function of the cecal microbiota, attenuating the effects of the HFD, added wit 6-propyl-2-thiouracil, when fed to BALB/c mice.


Subject(s)
Gastrointestinal Microbiome , Phaseolus , Animals , Diet, High-Fat/adverse effects , Flour , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Propylthiouracil/pharmacology , Protein Hydrolysates/pharmacology , RNA, Ribosomal, 16S/genetics , Weight Gain
SELECTION OF CITATIONS
SEARCH DETAIL
...