Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1163118, 2023.
Article in English | MEDLINE | ID: mdl-37781393

ABSTRACT

Introduction: Therapeutic vaccination based on synthetic long peptides (SLP®) containing both CD4+ and CD8+ T cell epitopes is a promising treatment strategy for chronic hepatitis B infection (cHBV). Methods: We designed SLPs for three HBV proteins, HBcAg and the non-secreted proteins polymerase and X, and investigated their ability to induce T cell responses ex vivo. A set of 17 SLPs was constructed based on viral protein conservation, functionality, predicted and validated binders for prevalent human leukocyte antigen (HLA) supertypes, validated HLA I epitopes, and chemical producibility. Results: All 17 SLPs were capable of inducing interferon gamma (IFNÉ£) production in samples from four or more donors that had resolved an HBV infection in the past (resolver). Further analysis of the best performing SLPs demonstrated activation of both CD8+ and CD4+ multi-functional T cells in one or more resolver and patient sample(s). When investigating which SLP could activate HBV-specific T cells, the responses could be traced back to different peptides for each patient or resolver. Discussion: This indicates that a large population of subjects with different HLA types can be covered by selecting a suitable mix of SLPs for therapeutic vaccine design. In conclusion, we designed a set of SLPs capable of inducing multifunctional CD8+ and CD4+ T cells ex vivo that create important components for a novel therapeutic vaccine to cure cHBV.


Subject(s)
CD4-Positive T-Lymphocytes , Hepatitis B virus , Humans , Interferon-gamma/metabolism , Histocompatibility Antigens Class I/metabolism , CD8-Positive T-Lymphocytes , Histocompatibility Antigens Class II/metabolism , Peptides , HLA Antigens/metabolism , Epitopes, T-Lymphocyte
2.
Oncoimmunology ; 11(1): 2131096, 2022.
Article in English | MEDLINE | ID: mdl-36211805

ABSTRACT

Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related deaths worldwide due to high recurrence rates after curative treatment and being frequently diagnosed at an advanced stage. Immune-checkpoint inhibition (ICPI) has yielded impressive clinical successes in a variety of solid cancers, however results in treatment of HCC have been modest. Vaccination could be a promising treatment to synergize with ICPI and enhance response rates. Cancer testis antigens (CTAs) were recently discovered to be widely expressed in HCC and expression in macroscopically tumor-free tissues correlated with recurrence, implying the presence of micro-satellites. To determine whether CTAs are immunogenic in HCC patients, we analyzed systemic T-cell and humoral responses against seven CTAs in 38 HCC patients using a multitude of techniques; flowcytometry, ELISA and whole antigen and peptide stimulation assays. CTA-specific T-cells were detected in all (25/25) analyzed patients, of which most had a memory phenotype but did not exhibit unequivocal signs of chronic stimulation or recent antigen encounter. Proliferative CD4+ and CD8+ T-cell responses against these CTAs were found in 14/16 analyzed HCC patients. CTA-peptide stimulation-induced granzyme B, IL2, and TNFa in 8/8 analyzed patients, including two MAGEA1 peptides included based on in silico prediction. Finally, IgG responses were observed in 13/32 patients, albeit with low titers. The presence of CD4+ and CD8+ T-cells and IgG responses shows the immunogenicity of these CTAs in HCC-patients. We hypothesize that vaccines based on these tumor-specific antigens may boost preexisting CTA-specific immunity and could enhance therapeutic efficacy of ICPI in advanced HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , CD8-Positive T-Lymphocytes , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Granzymes/metabolism , Humans , Immune Checkpoint Inhibitors , Immunoglobulin G/metabolism , Interleukin-2/metabolism , Liver Neoplasms/therapy , Male , Peptides/metabolism , Testis/metabolism , Testis/pathology
3.
JHEP Rep ; 4(11): 100576, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36185575

ABSTRACT

Background & Aims: Antigen-specific immunotherapy is a promising strategy to treat HBV infection and hepatocellular carcinoma (HCC). To facilitate killing of malignant and/or infected hepatocytes, it is vital to know which T cell targets are presented by human leucocyte antigen (HLA)-I complexes on patient-derived hepatocytes. Here, we aimed to reveal the hepatocyte-specific HLA-I peptidome with emphasis on peptides derived from HBV proteins and tumour-associated antigens (TAA) to guide development of antigen-specific immunotherapy. Methods: Primary human hepatocytes were isolated with high purity from (HBV-infected) non-tumour and HCC tissues using a newly designed perfusion-free procedure. Hepatocyte-derived HLA-bound peptides were identified by unbiased mass spectrometry (MS), after which source proteins were subjected to Gene Ontology and pathway analysis. HBV antigen and TAA-derived HLA peptides were searched for using targeted MS, and a selection of peptides was tested for immunogenicity. Results: Using unbiased data-dependent acquisition (DDA), we acquired a high-quality HLA-I peptidome of 2 × 105 peptides that contained 8 HBV-derived peptides and 14 peptides from 8 known HCC-associated TAA that were exclusive to tumours. Of these, 3 HBV- and 12 TAA-derived HLA peptides were detected by targeted MS in the sample they were originally identified in by DDA. Moreover, 2 HBV- and 2 TAA-derived HLA peptides were detected in samples in which no identification was made using unbiased MS. Finally, immunogenicity was demonstrated for 5 HBV-derived and 3 TAA-derived peptides. Conclusions: We present a first HLA-I immunopeptidome of isolated primary human hepatocytes, devoid of immune cells. Identified HBV-derived and TAA-derived peptides directly aid development of antigen-specific immunotherapy for chronic HBV infection and HCC. The described methodology can also be applied to personalise immunotherapeutic treatment of liver diseases in general. Lay summary: Immunotherapy that aims to induce immune responses against a virus or tumour is a promising novel treatment option to treat chronic HBV infection and liver cancer. For the design of successful therapy, it is essential to know which fragments (i.e. peptides) of virus-derived and tumour-specific proteins are presented to the T cells of the immune system by diseased liver cells and are thus good targets for immunotherapy. Here, we have isolated liver cells from patients who have chronic HBV infection and/or liver cancer, analysed what peptides are presented by these cells, and assessed which peptides are able to drive immune responses.

4.
Cancers (Basel) ; 13(10)2021 May 12.
Article in English | MEDLINE | ID: mdl-34065814

ABSTRACT

Immunopeptidomics is used to identify novel epitopes for (therapeutic) vaccination strategies in cancer and infectious disease. Various false discovery rates (FDRs) are applied in the field when converting liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectra to peptides. Subsequently, large efforts have recently been made to rescue peptides of lower confidence. However, it remains unclear what the overall relation is between the FDR threshold and the percentage of obtained HLA-binders. We here directly evaluated the effect of varying FDR thresholds on the resulting immunopeptidomes of HLA-eluates from human cancer cell lines and primary hepatocyte isolates using HLA-binding algorithms. Additional peptides obtained using less stringent FDR-thresholds, although generally derived from poorer spectra, still contained a high amount of HLA-binders and confirmed recently developed tools that tap into this pool of otherwise ignored peptides. Most of these peptides were identified with improved confidence when cell input was increased, supporting the validity and potential of these identifications. Altogether, our data suggest that increasing the FDR threshold for peptide identification in conjunction with data filtering by HLA-binding prediction, is a valid and highly potent method to more efficient exhaustion of immunopeptidome datasets for epitope discovery and reveals the extent of peptides to be rescued by recently developed algorithms.

5.
J Immunother Cancer ; 8(2)2020 10.
Article in English | MEDLINE | ID: mdl-33046620

ABSTRACT

BACKGROUND: We previously showed selectively hampered activation of lymph node-resident (LNR) dendritic cell (DC) subsets in the breast cancer (BrC) sentinel lymph node (SLN) to precede a state of profound T cell anergy. Reactivating these DC subsets by intratumoral delivery of the Toll-like receptor-9 (TLR9) agonist CpG-B could potentially offer a promising immune therapeutic strategy to combat this immune suppression and prevent disease spread. Unfortunately, CpG-B can limit its own immune stimulatory activity through direct TLR9-mediated activation of signal transducer and activator of transcription 3 (STAT3), pinpointed as a key regulator of immune suppression in the tumor microenvironment. Here, we have investigated whether in vitro exposure to CpG-B, with or without simultaneous inhibition of STAT3 signaling, could overcome immune suppression in BrC SLN. METHODS: Immune modulatory effects of CpG-B (CPG7909) with or without the JAK2/STAT3 inhibitor (STAT3i) AG490 were assessed in ex vivo cultured BrC SLN-derived single-cell suspensions (N=29). Multiparameter flow cytometric analyses were conducted for DC and T cell subset characterization and assessment of (intracellular) cytokine profiles. T cell reactivity against the BrC-associated antigen Mammaglobin-A was determined by means of interferon-γ ELISPOT assay. RESULTS: Although CpG-B alone induced activation of all DC subsets, combined inhibition of the JAK2/STAT3 pathway resulted in superior DC maturation (ie, increased CD83 expression), with most profound activation and maturation of LNR DC subsets. Furthermore, combined CpG-B and JAK2/STAT3 inhibition promoted Th1 skewing by counterbalancing the CpG-induced Th2/regulatory T cell response and significantly enhanced Mammaglobin-A specific T cell reactivity. CONCLUSION: Ex vivo immune modulation of the SLN by CpG-B and simultaneous JAK2/STAT3 inhibition can effectively overcome BrC-induced immune suppression by preferential activation of LNR DC, ultimately restoring type 1-mediated antitumor immunity, thereby securing a BrC-specific T cell response. These findings provide a clear rationale for clinical exploration of SLN-immune potentiation through local CpG/STAT3i administration in patients with BrC.


Subject(s)
Breast Neoplasms/immunology , Dendritic Cells/immunology , Immunomodulation/immunology , STAT3 Transcription Factor/metabolism , Sentinel Lymph Node/immunology , Breast Neoplasms/pathology , Female , Humans , Tumor Microenvironment
6.
J Virol ; 94(7)2020 03 17.
Article in English | MEDLINE | ID: mdl-31852786

ABSTRACT

Immunotherapy represents an attractive option for the treatment of chronic hepatitis B virus (HBV) infection. The HBV proteins polymerase (Pol) and HBx are of special interest for antigen-specific immunotherapy because they are essential for viral replication and have been associated with viral control (Pol) or are still expressed upon viral DNA integration (HBx). Here, we scored all currently described HBx- and Pol-derived epitope sequences for viral indispensability and conservation across all HBV genotypes. This yielded 7 HBx-derived and 26 Pol-derived reported epitopes with functional association and high conservation. We subsequently predicted novel HLA-binding peptides for 6 HLA supertypes prevalent in HBV-infected patients. Potential epitopes expected to be the least prone to immune escape were subjected to a state-of-the-art in vitro assay to validate their HLA-binding capacity. Using this method, a total of 13 HLA binders derived from HBx and 33 binders from Pol were identified across HLA types. Subsequently, we demonstrated interferon gamma (IFN-γ) production in response to 5 of the novel HBx-derived binders and 17 of the novel Pol-derived binders. In addition, we validated several infrequently described epitopes. Collectively, these results specify a set of highly potent T cell epitopes that represent a valuable resource for future HBV immunotherapy design.IMPORTANCE Multiple HBV-derived T cell epitopes have been reported, which can be useful in a therapeutic vaccination strategy. However, these epitopes are largely restricted to HLA-A*02, which is not dominantly expressed in populations with high HBV prevalence. Thus, current epitopes are falling short in the development of a global immunotherapeutic approach. Therefore, we aimed to identify novel epitopes for 6 HLA supertypes most prevalent in the infected population. Moreover, established epitopes might not all be equally effective as they can be subject to different levels of immune escape. It is therefore important to identify targets that are crucial in viral replication and conserved in the majority of the infected population. Here, we applied a stringent selection procedure to compose a combined overview of existing and novel HBV-derived T cell epitopes most promising for viral eradication. This set of T cell epitopes now lays the basis for the development of globally effective HBV antigen-specific immunotherapies.


Subject(s)
Epitopes, T-Lymphocyte/immunology , HLA Antigens/immunology , Hepatitis B virus/immunology , Hepatitis B, Chronic/virology , CD8-Positive T-Lymphocytes/immunology , Gene Products, pol/immunology , Genotype , HLA-A2 Antigen/immunology , Humans , Immunotherapy , Interferon-gamma/immunology , Peptides/immunology , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...