Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Methods ; 15(47): 6541-6550, 2023 12 07.
Article in English | MEDLINE | ID: mdl-37990986

ABSTRACT

This work describes the development of a membraneless, self-powered immunosensor exploiting a photoelectrochemical system based on two photoelectrodes for cardiac troponin I (cTn). An electrode based on CaBi2Ta2O9 combined with bismuth oxyiodides (BiOI/Bi4O5I2/Bi5O7I) was modified with the cTnI antibody (anti-cTnI) and applied in a photoelectrochemical cell as a photoanode. To perform the cTnI detection exploiting a self-powered photoelectrochemical setup, the immunosensor (anti-cTnI/BiOI/Bi4O5I2/Bi5O7I/CaBi2Ta2O9/FTO) was coupled to a photoelectrochemical cell containing a photocathode based on CuBi2O4 (CBO/FTO) for zero-biased photoelectrochemical immunosensing of cardiac troponin I (cTnI) biomarker. For comparison purposes, the photoanode was applied for cTnI detection in a three-electrode electrochemical cell. The spectroscopic, structural, and morphological characteristics of the photoelectrochemical (PEC) materials were evaluated using scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction (XRD). Electrochemical impedance spectroscopy (EIS) measurements were performed in the presence and absence of light to investigate the effects of photons on the charge transfer resistance of the photoanode. The influence of the cTnI biomarker on the photoelectrochemical response of the anti-cTnI antibody-modified photoelectrochemical platform (anti-cTnI/BiOI/Bi4O5I2/Bi5O7I/CaBi2Ta2O9/FTO) was evaluated by measuring the photocurrent of the system. The immunosensor presented a linear response ranging from 1 pg mL-1 to 200 ng mL-1 as well as a mean recovery percentage between 95.7% and 108.0% in real human serum samples for the cTnI biomarker.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Humans , Electrochemical Techniques/methods , Immunoassay/methods , Bismuth/chemistry , Biosensing Techniques/methods , Troponin I , Biomarkers , Alpha-Ketoglutarate-Dependent Dioxygenase FTO
2.
Biosens Bioelectron ; 143: 111625, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31476595

ABSTRACT

The first serum diagnosis of leprosy based on the detection of antibodies of patients using a recombinant mimetic peptide (PGL1M3R) as recognition element and exploiting a photoelectrochemical sensor is presented in this work. The photoeletrochemical platform consists of cadmium sulphide and nickel hydroxide electrodeposited on fluorine-doped tin oxide coated glass slide (CdS/Ni(OH)2/FTO). The optical band gap and flat band potential of the photoelectroactive materials were evaluated by UV-Vis spectroscopy and electrochemical impedance spectroscopy. The spatial photoelectrochemical response of the platform was evaluated by Scanning Electrochemical Microscopy and the morphology of the films was investigated by Scanning Electron Microscopy (SEM). The photoelectrochemical response of the CdS/Ni(OH)2/FTO platform was optimized by evaluating the effects of the kind, concentration, and pH of the buffer. Furthermore, the applied potential to the CdS/Ni(OH)2/FTO platform was also investigated. The CdS/Ni(OH)2/FTO photoelectrochemical platform was modified with a synthetic peptide by using glutaraldehyde as cross-linking reagent and chitosan (CS) for the covalent coupling of the peptide to the photoelectrochemical platform (PGL1M3R/CdS/Ni(OH)2/FTO). The photoelectrochemical immunosensor is able to distinguishing between positive and negative leprosy human sera samples diluted from 1:640 up to 1:10240. Furthermore, to test the specificity of the sensor, samples from tuberculosis and leishmaniasis patients were analyzed using the proposed photoelectrochemical immunosensor.


Subject(s)
Antigens, Bacterial/isolation & purification , Biosensing Techniques , Leprosy/diagnosis , Mycobacterium leprae/isolation & purification , Biomimetics , Humans , Leprosy/microbiology , Mycobacterium leprae/pathogenicity , Recombinant Proteins/chemistry
3.
Mikrochim Acta ; 185(12): 567, 2018 11 29.
Article in English | MEDLINE | ID: mdl-30498875

ABSTRACT

The published version of this article, unfortunately, contains an error in that Fig. 2 shows the same study as Fig. 3. The correct Fig. 2 is shown below.

4.
Anal Bioanal Chem ; 387(5): 1891-7, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17200855

ABSTRACT

The determination of reduced glutathione (GSH) in human erythrocytes using a simple, fast and sensitive method employing a glassy carbon electrode modified with cobalt tetrasulfonated phthalocyanine (CoTSPc) immobilized in poly(L: -lysine) (PLL) film was investigated. This modified electrode showed very efficient electrocatalytic activity for anodic oxidation of GSH, decreasing substantially the anodic overpotentials for 0.2 V versus Ag/AgCl. The modified electrode presented better performance in 0.1 mol l(-1) piperazine-N,N'-bis(2-ethanesulfonic acid) buffer at pH 7.4. The other experimental parameters, such as the concentration of CoTSPc and PLL in the membrane preparation, pH, type of buffer solution and applied potential, were optimized. Under optimized operational conditions, a linear response from 50 to 2,160 nmol l(-1) was obtained with a high sensitivity of 1.5 nA l nmol(-1) cm(-2). The detection limit for GSH determination was 15 nmol l(-1). The proposed sensor presented good repeatability, evaluated in terms of the relative standard deviation (1.5%) for n = 10. The modified electrode was applied for determination of GSH in erythrocyte samples and the results were in agreement with those obtained by a comparative method described in the literature The average recovery for these fortified samples was 100 +/- 1)%. Applying a paired Student's-t test to compare these methods, we could observe that, at the 95% confidence level, there was no statistical difference between the reference and the proposed methods.


Subject(s)
Biosensing Techniques/methods , Blood Chemical Analysis/methods , Electrochemistry/methods , Erythrocytes/metabolism , Glutathione/analysis , Adult , Biosensing Techniques/instrumentation , Electrochemistry/instrumentation , Female , Humans , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
5.
Talanta ; 68(4): 1378-83, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-18970475

ABSTRACT

A sensor based on glassy carbon (GC) electrode modified with cobalt tetrasulfonated phthalocyanine (CoTSPc) and a poly-l-lysine (PLL) film is proposed for diospyrin determination in nanomolar concentrations with differential pulse voltammetry (DPV) technique. The modified electrode showed excellent catalytic activity presenting much higher peak currents than those measured on a bare GC electrode. Linear response range, sensitivity and limit of detection (LOD) were of 1-120nmoll(-1), 220.46nAlnmol(-1)cm(-2) and 0.3nmoll(-1), respectively. The repeatability of the proposed sensor, evaluated in term of relative standard deviation (R.S.D.), was measured as 4.4% for 10 experiments in 50mumoll(-1) diospyrin samples. The developed sensor was applied for the determination of diospyrin in the crude extracts of the stem-bark of Diospyros montana Roxb. and the average recovery for these samples was 101.9 (+/-3.1)%.

6.
Talanta ; 64(4): 935-42, 2004 Nov 15.
Article in English | MEDLINE | ID: mdl-18969693

ABSTRACT

The reduction of 4-nitrophenol (4-NP) has been carried out on a modified glassy carbon electrode using cyclic and differential pulse voltammetry (DPV). The sensor was prepared by modifying the electrode with lithium tetracyanoethylenide (LiTCNE) and poly-l-lysine (PLL) film. With this modified electrode 4-NP was reduced at -0.7V versus SCE. The sensor presented better performance in 0.1moll(-1) acetate buffer at pH4.0. The other experimental parameters, such as concentration of LiTCNE and PLL, pulse amplitude and scan rate were optimized. Under optimized operational conditions, a linear response range from 27 up to 23200nmoll(-1) was obtained with a sensitivity of 3.057nAlnmol(-1)cm(-2). The detection limit for 4-NP determination was 7.5nmoll(-1). The proposed sensor presented good repeatability, evaluated in term of relative standard deviation (R.S.D.=4.4%) for n=10 and was applied for 4-NP determination in water samples. The average recovery for these samples was 103.0 (+/- 0.7)%.

SELECTION OF CITATIONS
SEARCH DETAIL
...