Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Basis Dis ; : 167248, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38777100

ABSTRACT

Recent studies in Diffuse Midline Gliomas (DMG) demonstrated a strong connection between epigenome dysregulation and metabolic rewiring. Here, we evaluated the value of targeting a glycolytic protein named Phosphofructo-2-kinase/Fructose-2,6-bisphosphatase 3 (PFKFB3) in H3.3K27M DMG. We observed that the viability of H3.3K27M cells is dramatically reduced by PFK15, a potent inhibitor of PFKFB3. Furthermore, PFKFB3 inhibition induced apoptosis and G2/M arrest. Interestingly, CRISPR-Knockout of the K27M mutant allele has a synergistic effect on the observed phenotype. Altogether, we identified PFKFB3 as a new target for H3.3K27M DMG, making PFK15 a potential candidate for future animal studies and clinical trials.

2.
Int J Mol Sci ; 24(6)2023 Mar 20.
Article in English | MEDLINE | ID: mdl-36982970

ABSTRACT

The survival of malignant leukemic cells is dependent on DNA damage repair (DDR) signaling. Reverse Phase Protein Array (RPPA) data sets were assembled using diagnostic samples from 810 adult and 500 pediatric acute myelogenous leukemia (AML) patients and were probed with 412 and 296 strictly validated antibodies, respectively, including those detecting the expression of proteins directly involved in DDR. Unbiased hierarchical clustering identified strong recurrent DDR protein expression patterns in both adult and pediatric AML. Globally, DDR expression was associated with gene mutational statuses and was prognostic for outcomes including overall survival (OS), relapse rate, and remission duration (RD). In adult patients, seven DDR proteins were individually prognostic for either RD or OS. When DDR proteins were analyzed together with DDR-related proteins operating in diverse cellular signaling pathways, these expanded groupings were also highly prognostic for OS. Analysis of patients treated with either conventional chemotherapy or venetoclax combined with a hypomethylating agent revealed protein clusters that differentially predicted favorable from unfavorable prognoses within each therapy cohort. Collectively, this investigation provides insight into variable DDR pathway activation in AML and may help direct future individualized DDR-targeted therapies in AML patients.


Subject(s)
Leukemia, Myeloid, Acute , Humans , Adult , Child , Prognosis , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , DNA Repair/genetics , DNA Damage , Discoidin Domain Receptors/genetics
3.
J Cell Sci ; 135(11)2022 06 01.
Article in English | MEDLINE | ID: mdl-35535520

ABSTRACT

Sonic hedgehog (SHH) medulloblastoma originates from the cerebellar granule neuron progenitor (CGNP) lineage, which depends on Hedgehog signaling for its perinatal expansion. Whereas SHH tumors exhibit overall deregulation of this pathway, they also show patient age-specific aberrations. To investigate whether the developmental stage of the CGNP can account for these age-specific lesions, we analyzed developing murine CGNP transcriptomes and observed highly dynamic gene expression as a function of age. Cross-species comparison with human SHH medulloblastoma showed partial maintenance of these expression patterns, and highlighted low primary cilium expression as hallmark of infant medulloblastoma and early embryonic CGNPs. This coincided with reduced responsiveness to upstream SHH pathway component Smoothened, whereas sensitivity to downstream components SUFU and GLI family proteins was retained. Together, these findings can explain the preference for SUFU mutations in infant medulloblastoma and suggest that drugs targeting the downstream SHH pathway will be most appropriate for infant patients.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Neural Stem Cells , Animals , Cell Proliferation/physiology , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Medulloblastoma/drug therapy , Medulloblastoma/genetics , Mice , Neural Stem Cells/metabolism
4.
PLoS Genet ; 17(11): e1009868, 2021 11.
Article in English | MEDLINE | ID: mdl-34752469

ABSTRACT

While comprehensive molecular profiling of histone H3.3 mutant pediatric high-grade glioma has revealed extensive dysregulation of the chromatin landscape, the exact mechanisms driving tumor formation remain poorly understood. Since H3.3 mutant gliomas also exhibit high levels of copy number alterations, we set out to address if the H3.3K27M oncohistone leads to destabilization of the genome. Hereto, we established a cell culture model allowing inducible H3.3K27M expression and observed an increase in mitotic abnormalities. We also found enhanced interaction of DNA replication factors with H3.3K27M during mitosis, indicating replication defects. Further functional analyses revealed increased genomic instability upon replication stress, as represented by mitotic bulky and ultrafine DNA bridges. This co-occurred with suboptimal 53BP1 nuclear body formation after mitosis in vitro, and in human glioma. Finally, we observed a decrease in ultrafine DNA bridges following deletion of the K27M mutant H3F3A allele in primary high-grade glioma cells. Together, our data uncover a role for H3.3 in DNA replication under stress conditions that is altered by the K27M mutation, promoting genomic instability and potentially glioma development.


Subject(s)
Brain Neoplasms/genetics , DNA Replication/genetics , Genomic Instability , Glioma/genetics , Histones/physiology , Brain Neoplasms/pathology , Child , Gene Expression Regulation, Neoplastic , Glioma/pathology , Humans , Mitosis/genetics
5.
Sci Rep ; 11(1): 16077, 2021 08 09.
Article in English | MEDLINE | ID: mdl-34373489

ABSTRACT

While there has been significant progress in the molecular characterization of the childhood brain cancer medulloblastoma, the tumor proteome remains less explored. However, it is important to obtain a complete understanding of medulloblastoma protein biology, since interactions between proteins represent potential new drug targets. Using previously generated phosphoprotein signaling-profiles of a large cohort of primary medulloblastoma, we discovered that phosphorylation of transcription factor CREB strongly correlates with medulloblastoma survival and associates with a differentiation phenotype. We further found that during normal cerebellar development, phosphorylated CREB was selectively expressed in differentiating cerebellar granule neuron progenitor (CGNP) cells. In line, we observed increased differentiation in CGNPs treated with Forskolin, Bmp6 and Bmp12 (Gdf7), which induce CREB phosphorylation. Lastly, we demonstrated that inducing CREB activation via PKA-mediated CREB signaling, but not Bmp/MEK/ERK mediated signalling, enhances medulloblastoma cell sensitivity to chemotherapy.


Subject(s)
Cell Differentiation/physiology , Cerebellar Neoplasms/metabolism , Cerebellar Neoplasms/pathology , Cyclic AMP Response Element-Binding Protein/metabolism , Medulloblastoma/metabolism , Medulloblastoma/pathology , Signal Transduction/physiology , Animals , Cells, Cultured , Cerebellum/metabolism , Cerebellum/pathology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Neural Stem Cells/pathology , Neurogenesis/physiology , Neurons/metabolism , Neurons/pathology , Phosphorylation/physiology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...