Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
medRxiv ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38699364

ABSTRACT

Tobacco smoke, alone or combined with alcohol, is the predominant cause of head and neck cancer (HNC). Here, we further explore how tobacco exposure contributes to cancer development by mutational signature analysis of 265 whole-genome sequenced HNC from eight countries. Six tobacco-associated mutational signatures were detected, including some not previously reported. Differences in HNC incidence between countries corresponded with differences in mutation burdens of tobacco-associated signatures, consistent with the dominant role of tobacco in HNC causation. Differences were found in the burden of tobacco-associated signatures between anatomical subsites, suggesting that tissue-specific factors modulate mutagenesis. We identified an association between tobacco smoking and three additional alcohol-related signatures indicating synergism between the two exposures. Tobacco smoking was associated with differences in the mutational spectra and repertoire of driver mutations in cancer genes, and in patterns of copy number change. Together, the results demonstrate the multiple pathways by which tobacco smoke can influence the evolution of cancer cell clones.

2.
Cell Genom ; 4(3): 100500, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38325367

ABSTRACT

Large-scale biorepositories and databases are essential to generate equitable, effective, and sustainable advances in cancer prevention, early detection, cancer therapy, cancer care, and surveillance. The Mutographs project has created a large genomic dataset and biorepository of over 7,800 cancer cases from 30 countries across five continents with extensive demographic, lifestyle, environmental, and clinical information. Whole-genome sequencing is being finalized for over 4,000 cases, with the primary goal of understanding the causes of cancer at eight anatomic sites. Genomic, exposure, and clinical data will be publicly available through the International Cancer Genome Consortium Accelerating Research in Genomic Oncology platform. The Mutographs sample and metadata biorepository constitutes a legacy resource for new projects and collaborations aiming to increase our current research efforts in cancer genomic epidemiology globally.


Subject(s)
Neoplasms , Humans , Neoplasms/diagnosis , Genomics , Databases, Factual , Delivery of Health Care , Biological Specimen Banks
3.
Acta Trop ; 251: 107110, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38163515

ABSTRACT

Yellow Fever (YF) is a viral arbovirosis of Public Health importance. In Brazil, surveillance is focused mainly on detecting epizootic events of Platyrrhini. Herein, we compared the detection and phylogenetic analysis of YF virus in two neotropical primates (NTP), a Callithrix detected in the previous epidemic period (2016-2020), and a Callicebus nigrifons, showing a new introduction of YF in 2023. This paper illustrates the importance of joint actions of laboratory and field teams to ensure quick response to Public Health emergencies, such as the intensification of vaccination of susceptible human populations.


Subject(s)
Yellow Fever , Yellow fever virus , Animals , Humans , Yellow fever virus/genetics , Phylogeny , Brazil/epidemiology , Yellow Fever/epidemiology , Yellow Fever/prevention & control , Callithrix , Disease Outbreaks
4.
Head Neck ; 46(3): 461-472, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38095042

ABSTRACT

BACKGROUND: Epidermal growth factor receptor (EGFR) is frequently activated in head and neck squamous cell carcinoma (HNSCC) and serves as a valuable target for therapy. Despite the availability of the EGFR inhibitors Cetuximab, Afatinib, and Allitinib, there are limited predictive markers for their response. Understanding molecular aberrations in HNSCC could facilitate the identification of new strategies for patient clinical and biological classification, offering novel therapeutic avenues. METHODS: We assessed CCNA1, DCC, MGMT, CDKN2A/p16, and DAPK methylation status in HNSCC cell lines and their association with anti-EGFR treatment response. RESULTS: MGMT methylation status displayed high sensitivity and specificity in distinguishing sensitive and resistant HNSCC cell lines to Afatinib (AUC = 0.955) and Allitinib (AUC = 0.935). Moreover, DAPK methylation status predicted response to Allitinib with high accuracy (AUC = 0.852), indicating their putative predictive biomarker roles. CONCLUSION: These findings hold promise for the development of more personalized and effective treatment approaches for HNSCC patients.


Subject(s)
Acrylamides , Carcinoma, Squamous Cell , Head and Neck Neoplasms , Quinazolines , Humans , Squamous Cell Carcinoma of Head and Neck/drug therapy , Squamous Cell Carcinoma of Head and Neck/genetics , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Afatinib , Head and Neck Neoplasms/drug therapy , Head and Neck Neoplasms/genetics , Cetuximab/pharmacology , Cetuximab/therapeutic use , ErbB Receptors/metabolism , Cell Line, Tumor , DNA Modification Methylases/genetics , DNA Modification Methylases/therapeutic use , Tumor Suppressor Proteins , DNA Repair Enzymes/genetics , DNA Repair Enzymes/therapeutic use
5.
Viruses ; 15(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38140657

ABSTRACT

St. Louis encephalitis virus (SLEV) is a neglected mosquito-borne Flavivirus that may cause severe neurological disease in humans and other animals. There are no specific treatments against SLEV infection or disease approved for human use, and drug repurposing may represent an opportunity to accelerate the development of treatments against SLEV. Here we present a scalable, medium-throughput phenotypic cell culture-based screening assay on Vero CCL81 cells to identify bioactive compounds that could be repurposed against SLEV infection. We screened eighty compounds from the Medicines for Malaria Venture (MMV) COVID Box library to identify nine (11%) compounds that protected cell cultures from SLEV-induced cytopathic effects, with low- to mid-micromolar potencies. We validated six hit compounds using viral plaque-forming assays to find that the compounds ABT-239, Amiodarone, Fluphenazine, Posaconazole, Triparanol, and Vidofludimus presented varied levels of antiviral activity and selectivity depending on the mammalian cell type used for testing. Importantly, we identified and validated the antiviral activity of the anti-flavivirus nucleoside analog 7DMA against SLEV. Triparanol and Fluphenazine reduced infectious viral loads in both Vero CCL81 and HBEC-5i cell cultures and, similar to the other validated compounds, are likely to exert antiviral activity through a molecular target in the host.


Subject(s)
Encephalitis, St. Louis , Flavivirus , Malaria , Triparanol , Animals , Humans , Encephalitis Virus, St. Louis , Encephalitis, St. Louis/diagnosis , Fluphenazine , Antiviral Agents/pharmacology , Mammals
6.
Braz J Microbiol ; 54(4): 3201-3209, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37688686

ABSTRACT

Transmission of herpesvirus between humans and non-human primates represents a serious potential threat to human health and endangered species conservation. This study aimed to identify herpesvirus genomes in samples of neotropical primates (NTPs) in the state of São Paulo, Brazil. A total of 242 NTPs, including Callithrix sp., Alouatta sp., Sapajus sp., and Callicebus sp., were evaluated by pan-herpesvirus polymerase chain reaction (PCR) and sequencing. Sixty-two (25.6%) samples containing genome segments representative of members of the family Herpesviridae, including 16.1% for Callitrichine gammaherpesvirus 3, 6.1% for Human alphaherpesvirus 1, 2.1% for Alouatta macconnelli cytomegalovirus, and 0.83% for Cebus albifrons lymphocryptovirus 1. No co-infections were detected. The detection of herpesvirus genomes was significantly higher among adult animals (p = 0.033) and those kept under human care (p = 0.008671). These findings confirm the importance of monitoring the occurrence of herpesviruses in NTP populations in epizootic events.


Subject(s)
Alouatta , Herpesviridae , Monkey Diseases , Animals , Monkey Diseases/epidemiology , Monkey Diseases/microbiology , Brazil/epidemiology , Primates , Herpesviridae/genetics
7.
Article in English | MEDLINE | ID: mdl-37608030

ABSTRACT

PURPOSE: Evaluate overall survival (OS), RAS, BRAF, and MSI frequencies in patients with metastatic colorectal cancer (mCRC), refractory to chemotherapy, and finally treated with cetuximab. METHODS: A retrospective cohort study to evaluate 211 mCRC patients with wild-type KRAS treated with cetuximab. BRAF V600E, KRAS, NRAS gene mutations, and MSI status were identified using PCR techniques in a population of pre-treated patients who were refractory to fluoropyrimidines, oxaliplatin, and irinotecan. In addition, we evaluated the mutation frequency of the BRAF and NRAS genes and the MSI status of this population. Uni- and multivariate analyses were performed for independent prognostic factors of OS. RESULTS: The median OS was 10.4 months, 6.6 months for patients with right and 11.5 months for left colon cancers (p = 0.02). The frequencies of mutations were BRAF at 3.9% (median OS of 4.9 months), NRAS at 3.38% (median OS of 6.9 months), and MSI-High status at 3.3% (median OS of 4.6 months). The OS, NRAS, and MSI frequencies were similar to those found in other studies that evaluated cetuximab in poly-treated patients and were associated with lower survival rates in univariate analyses. The frequency of BRAF mutations was lower than that found in previous studies. The only variable that remained significant for OS in the multivariate model was tumour laterality, with patients with right colon cancer presenting a worse prognosis (HR = 2.81). CONCLUSION: Although BRAF, NRAS mutations, and MSI-High status were associated with shorter OS in univariate analyses, only tumour laterality remained an independent prognostic factor in the multivariate analysis.

8.
Cell Mol Life Sci ; 80(8): 234, 2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37505242

ABSTRACT

The human chemokine stromal cell-derived factor-1 (SDF-1) or CXCL12 is involved in several homeostatic processes and pathologies through interaction with its cognate G protein-coupled receptor CXCR4. Recent research has shown that CXCL12 is present in the lungs and circulation of patients with coronavirus disease 2019 (COVID-19). However, the question whether the detected CXCL12 is bioactive was not addressed. Indeed, the activity of CXCL12 is regulated by NH2- and COOH-terminal post-translational proteolysis, which significantly impairs its biological activity. The aim of the present study was to characterize proteolytic processing of CXCL12 in broncho-alveolar lavage (BAL) fluid and blood plasma samples from critically ill COVID-19 patients. Therefore, we optimized immunosorbent tandem mass spectrometry proteoform analysis (ISTAMPA) for detection of CXCL12 proteoforms. In patient samples, this approach uncovered that CXCL12 is rapidly processed by site-specific NH2- and COOH-terminal proteolysis and ultimately degraded. This proteolytic inactivation occurred more rapidly in COVID-19 plasma than in COVID-19 BAL fluids, whereas BAL fluid samples from stable lung transplantation patients and the non-affected lung of lung cancer patients (control groups) hardly induced any processing of CXCL12. In COVID-19 BAL fluids with high proteolytic activity, processing occurred exclusively NH2-terminally and was predominantly mediated by neutrophil elastase. In low proteolytic activity BAL fluid and plasma samples, NH2- and COOH-terminal proteolysis by CD26 and carboxypeptidases were observed. Finally, protease inhibitors already approved for clinical use such as sitagliptin and sivelestat prevented CXCL12 processing and may therefore be of pharmacological interest to prolong CXCL12 half-life and biological activity in vivo.


Subject(s)
COVID-19 , Humans , Proteolysis , Chemokine CXCL12/metabolism , Peptide Hydrolases , Lung/metabolism , Receptors, CXCR4 , Protein Processing, Post-Translational
9.
Head Neck ; 45(10): 2489-2497, 2023 10.
Article in English | MEDLINE | ID: mdl-37522839

ABSTRACT

BACKGROUND: Metastatic lymph node involvement influences therapy decisions and serves as a prognostic indicator in oral squamous cell carcinoma (OSCC). However, many early-stage patients with clinically negative lymph nodes exhibit no metastasis upon surgical staging. This study aimed to identify differentially expressed miRNAs capable of distinguishing pathologically positive (pN+) from negative (pN0) nodes in OSCC patients without clinical evidence of lymph node metastases (cN0). METHODS: Expression levels of 798 miRNAs were assessed in tumor samples from 10 pN+ and 10 pN0 patients using the Nanostring nCounter platform. Validation was performed in an independent cohort of 15 pN+ and 24 pN0 patients through RT-qPCR. RESULTS: Eight miRNAs exhibited differential expression between pN0 and pN+ patients. Notably, hsa-miR-99a-5p demonstrated high sensitivity and specificity in predicting patients at higher risk of positive lymph nodes. CONCLUSIONS: These findings highlight hsa-miR-99a-5p as a potential biomarker for detecting lymph node metastasis in primary OSCC tumors.


Subject(s)
Carcinoma, Squamous Cell , Head and Neck Neoplasms , MicroRNAs , Mouth Neoplasms , Humans , Squamous Cell Carcinoma of Head and Neck , Carcinoma, Squamous Cell/pathology , Lymphatic Metastasis , Mouth Neoplasms/pathology , Biomarkers, Tumor/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Gene Expression Regulation, Neoplastic
10.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902230

ABSTRACT

Mayaro virus (MAYV) is an emerging arthropod-borne virus endemic in Latin America and the causative agent of arthritogenic febrile disease. Mayaro fever is poorly understood; thus, we established an in vivo model of infection in susceptible type-I interferon receptor-deficient mice (IFNAR-/-) to characterize the disease. MAYV inoculations in the hind paws of IFNAR-/- mice result in visible paw inflammation, evolve into a disseminated infection and involve the activation of immune responses and inflammation. The histological analysis of inflamed paws indicated edema at the dermis and between muscle fibers and ligaments. Paw edema affected multiple tissues and was associated with MAYV replication, the local production of CXCL1 and the recruitment of granulocytes and mononuclear leukocytes to muscle. We developed a semi-automated X-ray microtomography method to visualize both soft tissue and bone, allowing for the quantification of MAYV-induced paw edema in 3D with a voxel size of 69 µm3. The results confirmed early edema onset and spreading through multiple tissues in inoculated paws. In conclusion, we detailed features of MAYV-induced systemic disease and the manifestation of paw edema in a mouse model extensively used to study infection with alphaviruses. The participation of lymphocytes and neutrophils and expression of CXCL1 are key features in both systemic and local manifestations of MAYV disease.


Subject(s)
Alphavirus Infections , Alphavirus , Animals , Mice , Alphavirus Infections/pathology , Inflammation , Synchrotrons , X-Ray Microtomography
11.
12.
Viruses ; 15(2)2023 02 10.
Article in English | MEDLINE | ID: mdl-36851709

ABSTRACT

Ilhéus virus (ILHV) is a neglected mosquito-borne flavivirus. ILHV infection may lead to Ilhéus fever, an emerging febrile disease like dengue fever with the potential to evolve into a severe neurological disease characterized by meningoencephalitis; no specific treatments are available for this disease. This study assessed the antiviral properties of caffeic acid, an abundant component of plant-based food products that is also compatible with the socioeconomic limitations associated with this neglected infectious disease. The in vitro activity of caffeic acid on ILHV replication was investigated in Vero and A549 cell lines using plaque assays, quantitative RT-PCR, and immunofluorescence assays. We observed that 500 µM caffeic acid was virucidal against ILHV. Molecular docking indicated that caffeic acid might interact with an allosteric binding site on the envelope protein.


Subject(s)
Antiviral Agents , Animals , Humans , Molecular Docking Simulation , A549 Cells , Allosteric Site , Antiviral Agents/pharmacology
13.
Braz J Microbiol ; 54(1): 587-595, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36749535

ABSTRACT

The present case is the first description of a co-infection with canine distemper virus (CDV) and canine adenovirus type 1 (CAdV-1) in a free-living hoary fox pup from Brazil. The animal was found and rescued with poor body condition, dehydration, incoordination, ataxia, excessive vocalization, and "blue eyes" phenomenon. Despite the efforts, euthanasia was elected due to worsening clinical signs and poor prognosis. Pathologic examination revealed a mild, acute, random, necrotizing hepatitis, acute bronchopneumonia, hydrocephalus, corneal edema with epithelium degeneration, and acidophilic intracytoplasmatic inclusion bodies in different epithelial cells types with rare syncytial. Through immunohistochemistry, CDV antigen was observed in the tongue, trachea, lungs, liver, spleen, stomach, intestine and urinary bladder. Adenovirus antigen was identified in the nucleus of scattered hepatocytes. Polymerase chain reaction and sequencing demonstrated high similarity with CAdV-1 and wild-type strain of CDV close related to Brazilian viral lineages isolated from domestic dogs. Disease surveillance in wildlife animals is essential to assess possible conservation threats and consider the implementation of mitigation or control measures.


Subject(s)
Adenoviruses, Canine , Coinfection , Distemper Virus, Canine , Distemper , Animals , Dogs , Foxes , Brazil , Distemper/pathology
14.
Braz J Microbiol ; 53(4): 2321-2327, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35906453

ABSTRACT

Brazilian porcupine poxvirus (BPoPV) is a new poxvirus recently described in porcupines (Coendou prehensilis) from Brazil. Herein, we described a free-ranging adult male Coendou (Sphiggurus) spinosus rescued after being found lethargic on the ground in a rural area. The animal presented crusty, edematous, and suppurative skin lesions on the face, tail, and perineum, and yellowish ocular secretion. The diagnosis was performed by histopathology, transmission electron microscopy (TEM), PCR, and sequencing. Microscopically, proliferative and necrotizing dermatitis, subacute, multifocal with ballooning degeneration, and eosinophilic intracytoplasmic viral inclusion bodies were observed. TEM confirmed large brick-shaped virions inside the keratinocyte cytoplasm, measuring about 200-280 × 120-180 nm. Partial fragment of intracellular mature virion membrane protein gene and putative metalloproteinase gene was successfully amplified and sequenced, and the strain herein denoted IAL/21 V-102 was classified as BPoPV, showing 99.4% of nucleotide identity to the reference strain UFU/USP001. Enrofloxacin 10% (10 mg/kg) was administered every 24 h through intramuscular injection for 10 days, dipyrone/metamizole (25 mg/kg) every 24 h orally (PO) for 3 days, 0.5 ml (mL) of thymomodulin every 24 h PO for 30 days, and each 48 h for another 15 days. The lesions were cleaned and debrided every 15 days. Seventy-five days after the beginning of the treatment, the cutaneous lesions regressed, the animal gained weight, and was clinically stable. After treatment, the skin biopsy showed only mild epidermal acanthosis, intra-cellular edema, and mild lymphoplasmacytic perivascular dermatitis. No viral particles were observed by TEM and no poxviral DNA was amplified by PCR. This study documents the first case of confirmed and treated BPoPV infection in a hairy dwarf porcupine. The implemented therapeutic plan eliminated the infection and improved the general state of the animal.


Subject(s)
Dermatitis , Porcupines , Poxviridae Infections , Animals , Male , Skin , Microscopy, Electron, Transmission
15.
Virulence ; 13(1): 1031-1048, 2022 12.
Article in English | MEDLINE | ID: mdl-35734825

ABSTRACT

The ongoing COVID-19 pandemic caused a significant loss of human lives and a worldwide decline in quality of life. Treatment of COVID-19 patients is challenging, and specific treatments to reduce COVID-19 aggravation and mortality are still necessary. Here, we describe the discovery of a novel class of epiandrosterone steroidal compounds with cationic amphiphilic properties that present antiviral activity against SARS-CoV-2 in the low micromolar range. Compounds were identified in screening campaigns using a cytopathic effect-based assay in Vero CCL81 cells, followed by hit compound validation and characterization. Compounds LNB167 and LNB169 were selected due to their ability to reduce the levels of infectious viral progeny and viral RNA levels in Vero CCL81, HEK293, and HuH7.5 cell lines. Mechanistic studies in Vero CCL81 cells indicated that LNB167 and LNB169 inhibited the initial phase of viral replication through mechanisms involving modulation of membrane lipids and cholesterol in host cells. Selection of viral variants resistant to steroidal compound treatment revealed single mutations on transmembrane, lipid membrane-interacting Spike and Envelope proteins. Finally, in vivo testing using the hACE2 transgenic mouse model indicated that SARS-CoV-2 infection could not be ameliorated by LNB167 treatment. We conclude that anti-SARS-CoV-2 activities of steroidal compounds LNB167 and LNB169 are likely host-targeted, consistent with the properties of cationic amphiphilic compounds that modulate host cell lipid biology. Although effective in vitro, protective effects were cell-type specific and did not translate to protection in vivo, indicating that subversion of lipid membrane physiology is an important, yet complex mechanism involved in SARS-CoV-2 replication and pathogenesis.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Animals , Antiviral Agents/pharmacology , Chlorocebus aethiops , HEK293 Cells , Humans , Lipids , Mice , Pandemics , Quality of Life , Vero Cells , Virus Replication
16.
BMC Med Genomics ; 15(1): 143, 2022 06 28.
Article in English | MEDLINE | ID: mdl-35761395

ABSTRACT

BACKGROUND: Most colorectal cancers (CRC) arise from precursor lesions. This study aimed to characterize the mutation profile of colorectal cancer precursor lesions in a Brazilian population. METHODS: In total, 90 formalin-fixed paraffin-embedded colorectal precursor lesions, including 67 adenomas, 7 sessile serrated lesions, and 16 hyperplastic polyps, were analyzed by next-generation sequencing using a panel of 50 oncogenes and tumor suppressor genes. The genetic ancestry of the patients was estimated. RESULTS: Somatic driver mutations were identified in 66.7% of cases, including alterations in APC (32.2%), TP53 (20.0%), KRAS (18.9%), BRAF (13.3%) and EGFR (7.8%). Adenomas displayed a higher number of mutations, mainly in APC, compared to serrated polyps (73.1% vs. 47.8%, p = 0.026). Advanced adenomas had a significantly higher frequency of mutation in KRAS and a high overall mutation rate than early adenomas (92.9% vs. 59%, p = 0.006). A high degree of ancestry admixture was observed in the population studied, with a predominance of European components (mean of 73%) followed by African (mean of 11.3%). No association between genetic ancestry and type of lesions was found. The mutation profile of Brazilian colorectal precursor lesions exhibits alteration in APC, KRAS, TP53, and BRAF at different frequencies according to lesion type. CONCLUSIONS: These results bestow the knowledge of CRC's biologic history and support the potential of these biomarkers for precursor lesions detection in CRC screening of the Brazilian population.


Subject(s)
Adenoma , Colonic Polyps , Colorectal Neoplasms , Adenoma/genetics , Adenoma/pathology , Colonic Polyps/genetics , Colonic Polyps/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Humans , Mutation , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics
17.
Diagnostics (Basel) ; 12(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35054281

ABSTRACT

The use of droplet digital PCR (ddPCR) to identify and quantify low-abundance targets is a significant advantage for accurately detecting potentially oncogenic bacteria. Fusobacterium nucleatum (Fn) is implicated in colorectal cancer (CRC) tumorigenesis and is becoming an important prognostic biomarker. We evaluated the detection accuracy and clinical relevance of Fn DNA by ddPCR in a molecularly characterized, formalin-fixed, paraffin-embedded (FFPE) CRC cohort previously analyzed by qPCR for Fn levels. Following a ddPCR assay optimization and an analytical evaluation, Fn DNA were measured in 139 CRC FFPE cases. The measures of accuracy for Fn status compared to the prior results generated by qPCR and the association with clinicopathological and molecular patients' features were also evaluated. The ddPCR-based Fn assay was sensitive and specific to positive controls. Fn DNA were detected in 20.1% of cases and further classified as Fn-high and Fn-low/negative, according to the median amount of Fn DNA that were detected in all cases and associated with the patient's worst prognosis. There was a low agreement between the Fn status determined by ddPCR and qPCR (Cohen's Kappa = 0.210). Our findings show that ddPCR can detect and quantify Fn in FFPE tumor tissues and highlights its clinical relevance in Fn detection in a routine CRC setting.

18.
JCI Insight ; 7(1)2022 01 11.
Article in English | MEDLINE | ID: mdl-34793331

ABSTRACT

Neutrophils are recognized as important circulating effector cells in the pathophysiology of severe coronavirus disease 2019 (COVID-19). However, their role within the inflamed lungs is incompletely understood. Here, we collected bronchoalveolar lavage (BAL) fluids and parallel blood samples of critically ill COVID-19 patients requiring invasive mechanical ventilation and compared BAL fluid parameters with those of mechanically ventilated patients with influenza, as a non-COVID-19 viral pneumonia cohort. Compared with those of patients with influenza, BAL fluids of patients with COVID-19 contained increased numbers of hyperactivated degranulating neutrophils and elevated concentrations of the cytokines IL-1ß, IL-1RA, IL-17A, TNF-α, and G-CSF; the chemokines CCL7, CXCL1, CXCL8, CXCL11, and CXCL12α; and the protease inhibitors elafin, secretory leukocyte protease inhibitor, and tissue inhibitor of metalloproteinases 1. In contrast, α-1 antitrypsin levels and net proteolytic activity were comparable in COVID-19 and influenza BAL fluids. During antibiotic treatment for bacterial coinfections, increased BAL fluid levels of several activating and chemotactic factors for monocytes, lymphocytes, and NK cells were detected in patients with COVID-19 whereas concentrations tended to decrease in patients with influenza, highlighting the persistent immunological response to coinfections in COVID-19. Finally, the high proteolytic activity in COVID-19 lungs suggests considering protease inhibitors as a treatment option.


Subject(s)
Bacterial Infections , Bronchoalveolar Lavage Fluid , COVID-19 , Coinfection , Influenza, Human , Adult , Aged , Bacterial Infections/complications , Bacterial Infections/immunology , Bacterial Infections/metabolism , Bacterial Infections/pathology , Bronchoalveolar Lavage Fluid/chemistry , Bronchoalveolar Lavage Fluid/cytology , Bronchoalveolar Lavage Fluid/immunology , COVID-19/complications , COVID-19/diagnosis , COVID-19/immunology , COVID-19/pathology , Coinfection/immunology , Coinfection/metabolism , Coinfection/pathology , Cytokines/analysis , Female , Humans , Inflammation , Influenza, Human/complications , Influenza, Human/diagnosis , Influenza, Human/immunology , Influenza, Human/pathology , Lung/immunology , Lung/metabolism , Lung/pathology , Male , Middle Aged
19.
Front Physiol ; 12: 706128, 2021.
Article in English | MEDLINE | ID: mdl-34646148

ABSTRACT

Although some studies have shown that a high-fat diet (HFD) adversely affects muscle extracellular matrix remodeling, the mechanisms involved in muscle trophism, inflammation, and adipogenesis have not been fully investigated. Thus, we investigated the effects of 8 weeks of paternal resistance training (RT) on gene and protein expression/activity of critical factors involved in muscle inflammation and remodeling of fathers and offspring (offspring exposed to standard chow or HFD). Animals were randomly distributed to constitute sedentary fathers (SF; n = 7; did not perform RT) or trained fathers (TF n = 7; performed RT), with offspring from mating with sedentary females. After birth, 28 male pups were divided into four groups (n = 7 per group): offspring from sedentary father submitted either to control diet (SFO-C) or high-fat diet (SFO-HF) and offspring from trained father submitted to control diet (TFO-C) or high-fat diet (TFO-HF). Our results show that an HFD downregulated collagen mRNA levels and upregulated inflammatory and atrophy pathways and adipogenic transcription factor mRNA levels in offspring gastrocnemius muscle. In contrast, paternal RT increased MMP-2 activity and decreased IL-6 levels in offspring exposed to a control diet. Paternal RT upregulated P70s6k and Ppara mRNA levels and downregulated Atrogin1 mRNA levels, while decreasing NFκ-B, IL-1ß, and IL-8 protein levels in offspring exposed to an HFD. Paternal physical training influences key skeletal muscle remodeling pathways and inflammatory profiles relevant for muscle homeostasis maintenance in offspring submitted to different diets.

20.
Cancers (Basel) ; 13(12)2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34207933

ABSTRACT

The identification of molecular markers in negative surgical margins of oral squamous cell carcinoma (OSCC) might help in identifying residual molecular aberrations, and potentially improve the prediction of prognosis. We performed an Infinium MethylationEPIC BeadChip array on 32 negative surgical margins stratified based on the status of tumor recurrence in order to identify recurrence-specific aberrant DNA methylation (DNAme) markers. We identified 2512 recurrence-associated Differentially Methylated Positions (DMPs) and 392 Differentially Methylated Regions (DMRs) which were enriched in cell signaling and cancer-related pathways. A set of 14-CpG markers was able to discriminate recurrent and non-recurrent cases with high specificity and sensitivity rates (AUC 0.98, p = 3 × 10-6; CI: 0.95-1). A risk score based on the 14-CpG marker panel was applied, with cases classified within higher risk scores exhibiting poorer survival. The results were replicated using tumor-adjacent normal HNSCC samples from The Cancer Genome Atlas (TCGA). We identified residual DNAme aberrations in the negative surgical margins of OSCC patients, which could be informative for patient management by improving therapeutic intervention. This study proposes a novel DNAme-based 14-CpG marker panel as a promising predictor for tumor recurrence, which might contribute to improved decision-making for the personalized treatment of OSCC cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...