Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 322: 121644, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37004731

ABSTRACT

Altered sensitivity to the chronotropic and inotropic effects of catecholamines and reduction in ß1/ß2-adrenoceptor (ß1/ß2-AR) ratio were reported in failing and in senescent human heart, as well as in isolated atria and ventricle of rats submitted to stress. This was due to downregulation of ß1-AR with or without up-regulation of ß2-AR. AIMS: To investigate the stress-induced behavior of ß1-AR in the heart of mice expressing a non-functional ß2-AR subtype. The guiding hypothesis is that the absence of ß2-AR signaling will not affect the behavior of ß1-AR during stress and that those are independent processes. MATERIALS AND METHODS: The chronotropic and inotropic responses to ß-AR agonists in isolated atria of stressed mice expressing a non-functional ß2-AR were analyzed. The mRNA and protein expressions of ß1- and ß2-AR were also determined. KEY FINDINGS: No deaths were observed in mice under stress protocol. Atria of stressed mice displayed reduced sensitivity to isoprenaline compared to the controls, an effect that was abolished by the ß2- and ß1-AR antagonists 50 nM ICI118,551 and 300 nM CGP20712A, respectively. Sensitivity and maximum response to the ß-agonists dobutamine and salbutamol were not altered by stress or ICI118,551. The responses to dobutamine and salbutamol were prevented by CGP20712A. The expression of ß1-AR was reduced at protein levels. SIGNIFICANCE: Collectively, our data provide evidence that the cardiac ß2-AR is not essential for survival in a stressful situation and that the stress-induced reduction of ß1-AR expression was independent of the ß2-AR presence.


Subject(s)
Adrenergic beta-Agonists , Dobutamine , Humans , Mice , Rats , Animals , Dobutamine/pharmacology , Dobutamine/metabolism , Adrenergic beta-Agonists/pharmacology , Heart Atria/metabolism , Receptors, Adrenergic, beta-2/metabolism , Isoproterenol/pharmacology , Isoproterenol/metabolism , Albuterol/pharmacology , Receptors, Adrenergic, beta-1/genetics , Receptors, Adrenergic, beta-1/metabolism , Adrenergic beta-Antagonists/pharmacology , Adrenergic beta-Antagonists/metabolism
2.
Stem Cell Res Ther ; 9(1): 323, 2018 11 21.
Article in English | MEDLINE | ID: mdl-30463630

ABSTRACT

The use of secretome may be a new strand of cell therapy, which is equal to or even superior to the injection of live cells, called cell-free therapy. In ovarian transplantation, this approach may be a therapeutic possibility for the ovarian graft in hypoxia. We designed the present study to evaluate whether the cell-free therapy with the secretome of adipose tissue-derived stem cells (ASCs) in rat frozen-thawed ovarian grafts could protect a graft against ischemic injury. A single dose of rat ASCs secretome or vehicle was injected into the bilateral frozen-thawed ovaries of 18 adult female rats immediately after an autologous transplant. Nine animals were used to control the cryopreservation protocol and were evaluated before and after the cryopreservation process. Daily vaginal smears were performed for estrous cycle evaluation until euthanasia on postoperative day 30. Follicle viability by trypan blue, graft morphology by HE, and apoptosis by TUNEL and cleaved-caspase-3 were assessed. No differences were found with respect to estrous cycle resumption and follicle viability (p > 0.05). However, compared with the vehicle-treated grafts, the morphology of the secretome-treated grafts was impaired, showing reduced follicular population and increased apoptosis (p < 0.05). ASC secretome impaired the rat frozen-thawed ovarian graft from ischemic injury. However, more studies are needed to evaluate the factors involved and the possibility of applying the secretome in scaffolds to optimize its use.


Subject(s)
Adipose Tissue/chemistry , Ischemia/therapy , Mesenchymal Stem Cell Transplantation , Ovary/blood supply , Ovary/transplantation , Adipose Tissue/cytology , Animals , Cryopreservation , Female , Humans , Hypoxia/prevention & control , Hypoxia/therapy , Ischemia/prevention & control , Rats , Rats, Wistar , Transplantation, Autologous
3.
Sci Rep ; 7(1): 15434, 2017 11 13.
Article in English | MEDLINE | ID: mdl-29133820

ABSTRACT

Cardiac energy metabolism must cope with early postnatal changes in tissue oxygen tensions, hemodynamics, and cell proliferation to sustain development. Here, we tested the hypothesis that proliferating neonatal cardiomyocytes are dependent on high oxidative energy metabolism. We show that energy-related gene expression does not correlate with functional oxidative measurements in the developing heart. Gene expression analysis suggests a gradual overall upregulation of oxidative-related genes and pathways, whereas functional assessment in both cardiac tissue and cultured cardiomyocytes indicated that oxidative metabolism decreases between the first and seventh days after birth. Cardiomyocyte extracellular flux analysis indicated that the decrease in oxidative metabolism between the first and seventh days after birth was mostly related to lower rates of ATP-linked mitochondrial respiration, suggesting that overall energetic demands decrease during this period. In parallel, the proliferation rate was higher for early cardiomyocytes. Furthermore, in vitro nonlethal chemical inhibition of mitochondrial respiration reduced the proliferative capacity of early cardiomyocytes, indicating a high energy demand to sustain cardiomyocyte proliferation. Altogether, we provide evidence that early postnatal cardiomyocyte proliferative capacity correlates with high oxidative energy metabolism. The energy requirement decreases as the proliferation ceases in the following days, and both oxidative-dependent metabolism and anaerobic glycolysis subside.


Subject(s)
Cell Proliferation/physiology , Energy Metabolism/physiology , Heart/growth & development , Myocytes, Cardiac/metabolism , Animals , Animals, Newborn , Cells, Cultured , Glycolysis/physiology , Mitochondria/chemistry , Mitochondria/metabolism , Myocytes, Cardiac/cytology , Oxidation-Reduction , Oxidative Stress/physiology , Oxygen/analysis , Oxygen/metabolism , Primary Cell Culture , Rats , Rats, Wistar
4.
Stem Cell Res Ther ; 6: 57, 2015 04 15.
Article in English | MEDLINE | ID: mdl-25889829

ABSTRACT

The preliminary results of ovarian transplantation in clinical practice are encouraging. However, the follicular depletion caused by ischemic injury is a main concern and is directly related to short-term graft survival. Cell therapy with adipose tissue-derived stem cells (ASCs) could be an alternative to induce early angiogenesis in the graft. This study aimed to evaluate ASCs therapy in rat cryopreserved ovarian grafts. A single dose of rat ASC (rASCs) or vehicle was injected into the bilateral cryopreserved ovaries of twelve adult female rats immediately after an autologous transplant. Daily vaginal smears were performed for estrous cycle evaluation until euthanasia on postoperative day 30. Follicle viability, graft morphology and apoptosis were assessed. No differences were found with respect to estrous cycle resumption and follicle viability (P>0.05). However, compared with the vehicle-treated grafts, the morphology of the ASCs-treated grafts was impaired, with diffuse atrophy and increased apoptosis (P<0.05). ASCs direct injected in the stroma of rat cryopreserved ovarian grafts impaired its morphology although may not interfere with the functional resumption on short-term. Further investigations are necessary to evaluated whether it could compromise their viability in the long-term.


Subject(s)
Adipose Tissue/cytology , Cell- and Tissue-Based Therapy/methods , Cryopreservation , Ovary/blood supply , Stem Cell Transplantation , Animals , Apoptosis/physiology , Estrous Cycle/physiology , Female , Graft Survival , Ischemia/pathology , Ischemia/therapy , Neovascularization, Physiologic/physiology , Ovary/transplantation , Rats , Rats, Wistar , Reperfusion Injury/pathology , Reperfusion Injury/therapy , Stem Cells/cytology , Transplantation, Autologous
SELECTION OF CITATIONS
SEARCH DETAIL
...