Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Parasitol Int ; 96: 102770, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37301364

ABSTRACT

INTRODUCTION: Chagas disease (CD), caused by protozoan Trypanosoma cruzi (T. cruzi), is a neglected disease that affects millions of people worldwide. The parasite clearance by the immune cells is accomplished by the activation of inflammation and production of reactive oxygen species, including nitric oxide (NO) that can lead to tissue injury and DNA damage. On the other hand, to balance the oxidative environment and decrease free radicals, there is an antioxidant system composed of enzymes and vitamins. The aim was to evaluate oxidative stress parameters in symptomatic and asymptomatic patients with Chagas disease. METHODS: Participants were divided into three groups: indeterminate CD (asymptomatic, n = 8), CD with cardiac/digestive involvement (symptomatic, n = 14), and Control healthy individuals (n = 20). The following parameters were analyzed: DNA damage, NO serum levels, hydrophilic antioxidant capacity (HAC) and vitamin E. RESULTS: Symptomatic patients showed increased DNA damage and NO levels and lower HAC and vitamin E levels compared to asymptomatic patients and control subjects. CONCLUSIONS: It is possible to conclude that CD patients with clinical symptoms have higher oxidative stress, characterized by increased DNA damage and NO levels, and reduced antioxidant capacity and vitamin E levels.


Subject(s)
Chagas Disease , Trypanosoma cruzi , Humans , Antioxidants/metabolism , Oxidative Stress , Vitamin E , Persistent Infection , Nitric Oxide , Chronic Disease
2.
Front Immunol ; 12: 653151, 2021.
Article in English | MEDLINE | ID: mdl-33841437

ABSTRACT

We evaluated the safety, optimal dose, and preliminary effectiveness of a new-approach Africanized honeybee (Apis mellifera) Antivenom (AAV) in a phase I/II, multicenter, non-randomized, single-arm clinical trial involving 20 participants with multiple stings. Participants received 2 to 10 vials of AAV depending on the number of stings they suffered, or a predefined adjuvant, symptomatic, and complementary treatment. The primary safety endpoint was the occurrence of early adverse reactions within the first 24 h of treatment. Preliminary efficacy based on clinical evolution, including laboratory findings, was assessed at baseline and at various time points over the four following weeks. ELISA assays and mass spectrometry were used to estimate venom pharmacokinetics before, during, and after treatment. Twenty adult participants, i.e., 13 (65%) men and 7 (35%) women, with a median age of 44 years and a mean body surface area of 1.92 m2 (median = 1.93 m2) were recruited. The number of stings ranged from 7 to > 2,000, with a median of 52.5. Symptoms of envenoming were classified as mild, moderate, or severe in 80% (16), 15% (3), and 5% (1) of patients, respectively; patients with mild, moderate, or severe envenoming received 2, 6, and 10 vials of AAV as per the protocol. None of the patients had late reactions (serum sickness) within 30 d of treatment. There was no discontinuation of the protocol due to adverse events, and there were no serious adverse events. One patient had a moderate adverse event, transient itchy skin, and erythroderma. All participants completed the intravenous antivenom infusion within 2 h, and there was no loss to follow-up after discharge. ELISA assays showed venom (melittin and PLA2) concentrations varying between 0.25 and 1.479 ng/mL prior to treatment. Venom levels decreased in all patients during the hospitalization period. Surprisingly, in nine cases (45%), despite clinical recovery and the absence of symptoms, venom levels increased again during outpatient care 10 d after discharge. Mass spectrometry showed melittin in eight participants, 30 d after treatment. Considering the promising safety results for this investigational product in the treatment of massive Africanized honeybee attack, and its efficacy, reflected in the clinical improvements and corresponding immediate decrease in blood venom levels, the AAV has shown to be safe for human use. Clinical Trial Registration: UTN: U1111-1160-7011, identifier [RBR-3fthf8].


Subject(s)
Antivenins/administration & dosage , Bee Venoms/antagonists & inhibitors , Bees/immunology , Insect Bites and Stings/therapy , Adult , Aged , Animals , Antivenins/adverse effects , Bee Venoms/blood , Brazil , Female , Humans , Insect Bites and Stings/blood , Insect Bites and Stings/diagnosis , Insect Bites and Stings/immunology , Male , Middle Aged , Severity of Illness Index , Treatment Outcome , Young Adult
3.
Article in English | MEDLINE | ID: mdl-29209361

ABSTRACT

BACKGROUND: Classically, Crotalus durissus terrificus (Cdt) venom can be described, according to chromatographic criteria, as a simple venom, composed of four major toxins, namely: gyroxin, crotamine, crotoxin and convulxin. Crotoxin is a non-covalent heterodimeric neurotoxin constituted of two subunits: an active phospholipase A2 and a chaperone protein, termed crotapotin. This molecule is composed of three peptide chains connected by seven disulfide bridges. Naturally occurring variants/isoforms of either crotoxin or crotapotin itself have already been reported. METHODS: The crude Cdt venom was separated by using RP-HPLC and the toxins were identified by mass spectrometry (MS). Crotapotin was purified, reduced and alkylated in order to separate the peptide chains that were further analyzed by mass spectrometry and de novo peptide sequencing. RESULTS: The RP-HPLC profile of the isolated crotapotin chains already indicated that the α chain would present isoforms, which was corroborated by the MS and tandem mass spectrometry analyses. CONCLUSION: It was possible to observe that the Cdt crotapotin displays a preferred amino acid substitution pattern present in the α chain, at positions 31 and 40. Moreover, substitutions could also be observed in ß and γ chains (one for each). The combinations of these four different peptides, with the already described chains, would produce ten different crotapotins, which is compatible to our previous observations for the Cdt venom.

SELECTION OF CITATIONS
SEARCH DETAIL
...