Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters











Publication year range
1.
Entropy (Basel) ; 26(3)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38539771

ABSTRACT

The Kardar-Parisi-Zhang (KPZ) equation describes a wide range of growth-like phenomena, with applications in physics, chemistry and biology. There are three central questions in the study of KPZ growth: the determination of height probability distributions; the search for ever more precise universal growth exponents; and the apparent absence of a fluctuation-dissipation theorem (FDT) for spatial dimension d>1. Notably, these questions were answered exactly only for 1+1 dimensions. In this work, we propose a new FDT valid for the KPZ problem in d+1 dimensions. This is achieved by rearranging terms and identifying a new correlated noise which we argue to be characterized by a fractal dimension dn. We present relations between the KPZ exponents and two emergent fractal dimensions, namely df, of the rough interface, and dn. Also, we simulate KPZ growth to obtain values for transient versions of the roughness exponent α, the surface fractal dimension df and, through our relations, the noise fractal dimension dn. Our results indicate that KPZ may have at least two fractal dimensions and that, within this proposal, an FDT is restored. Finally, we provide new insights into the old question about the upper critical dimension of the KPZ universality class.

2.
Phys Rev E ; 108(4-1): 044104, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37978653

ABSTRACT

Motile organisms can form stable agglomerates such as cities or colonies. In the outbreak of a highly contagious disease, the control of large-scale epidemic spread depends on factors like the number and size of agglomerates, travel rate between them, and disease recovery rate. While the emergence of agglomerates permits early interventions, it also explains longer real epidemics. In this work, we study the spread of susceptible-infected-recovered (SIR) epidemics (or any sort of information exchange by contact) in one-dimensional spatially structured systems. By working in one dimension, we establish a necessary foundation for future investigation in higher dimensions and mimic micro-organisms in narrow channels. We employ a model of self-propelled particles which spontaneously form multiple clusters. For a lower rate of stochastic reorientation, particles have a higher tendency to agglomerate and therefore the clusters become larger and less numerous. We examine the time evolution averaged over many epidemics and how it is affected by the existence of clusters through the eventual recovery of infected particles before reaching new clusters. New terms appear in the SIR differential equations in the last epidemic stages. We show how the final number of ever-infected individuals depends nontrivially on single-individual parameters. In particular, the number of ever-infected individuals first increases with the reorientation rate since particles escape sooner from clusters and spread the disease. For higher reorientation rate, travel between clusters becomes too diffusive and the clusters too small, decreasing the number of ever-infected individuals.


Subject(s)
Epidemics , Humans , Disease Outbreaks , Cell Movement , Diffusion
3.
Eur Phys J E Soft Matter ; 46(10): 95, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37819444

ABSTRACT

In the presence of an obstacle, active particles condensate into a surface "wetting" layer due to persistent motion. If the obstacle is asymmetric, a rectification current arises in addition to wetting. Asymmetric geometries are therefore commonly used to concentrate microorganisms like bacteria and sperms. However, most studies neglect the fact that biological active matter is diverse, composed of individuals with distinct self-propulsions. Using simulations, we study a mixture of "fast" and "slow" active Brownian disks in two dimensions interacting with large half-disk obstacles. With this prototypical obstacle geometry, we analyze how the stationary collective behavior depends on the degree of self-propulsion "diversity," defined as proportional to the difference between the self-propulsion speeds, while keeping the average self-propulsion speed fixed. A wetting layer rich in fast particles arises. The rectification current is amplified by speed diversity due to a superlinear dependence of rectification on self-propulsion speed, which arises from cooperative effects. Thus, the total rectification current cannot be obtained from an effective one-component active fluid with the same average self-propulsion speed, highlighting the importance of considering diversity in active matter.

4.
Phys Rev E ; 107(1-1): 014608, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36797971

ABSTRACT

We study active surface wetting using a minimal model of bacteria that takes into account the intrinsic motility diversity of living matter. A mixture of "fast" and "slow" self-propelled Brownian particles is considered in the presence of a wall. The evolution of the wetting layer thickness shows an overshoot before stationarity and its composition evolves in two stages, equilibrating after a slow elimination of excess particles. Nonmonotonic evolutions are shown to arise from delayed avalanches towards the dilute phase combined with the emergence of a transient particle front.

5.
Open Res Eur ; 2: 37, 2022.
Article in English | MEDLINE | ID: mdl-38654755

ABSTRACT

This paper aims to introduce the innovative work carried out in the Horizon 2020 DECODER project - acronym for "DEveloper COmpanion for Documented and annotatEd code Reference" - (Grant Agreement no. 824231) by linking the fields of natural language processing (NLP) and software engineering. The project as a whole addresses the development of a framework, namely the Persistent Knowledge Monitor (PKM), that acts as a central infrastructure to store, access, and trace all the data, information and knowledge related to a given software or ecosystem. This meta-model defines the knowledge base that can be queried and analysed by all the tools integrated and developed in DECODER. Besides, the DECODER project offers a friendly user interface where each of the predefined three roles (i.e., developers, maintainers and reviewers) can access and query the PKM with their personal accounts. The paper focuses on the NLP tools developed and integrated in the PKM, namely the deep learning models developed to perform variable misuse, code summarisation and semantic parsing. These were developed under a common work package - "Activities for the developer" - intended to precisely target developers, who can perform tasks such as detection of bugs, automatic generation of documentation for source code and generation of code snippets from natural languages instructions, among the multiple functionalities that DECODER offers. These tools assist and help the developers in the daily work, by increasing their productivity and avoiding loss of time in tedious tasks such as manual bug detection. Training and validation were conducted for four use cases in Java, C and C++ programming languages in order to evaluate the performance, suitability, usability, etc. of the developed tools.


Software engineers usually spends a lot of time in tedious activities like debugging and documenting code or finding examples of code snippets to use as a basis for their new programmes. Given the large and complex software systems that exist nowadays, being forced to perform these tasks manually causes a considerable drop in the overall productivity of programmers. The models developed in this work target Java, C and C++ programming languages and aim to alleviate software developers', maintainers' and reviewers' efforts, by proposing automatic NLP solutions to carry out tasks such as bug detection, documentation generation and code search.

6.
Soft Matter ; 17(43): 9926-9936, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34676388

ABSTRACT

Self-propelled swimmers such as bacteria agglomerate into clusters as a result of their persistent motion. In 1D, those clusters do not coalesce macroscopically and the stationary cluster size distribution (CSD) takes an exponential form. We develop a minimal lattice model for active particles in narrow channels to study how clustering is affected by the interplay between self-propulsion speed diversity and confinement. A mixture of run-and-tumble particles with a distribution of self-propulsion speeds is simulated in 1D. Particles can swap positions at rates proportional to their relative self-propulsion speed. Without swapping, we find that the average cluster size Lc decreases with diversity and follows a non-arithmetic power mean of the single-component Lc's, unlike the case of tumbling-rate diversity previously studied. Effectively, the mixture is thus equivalent to a system of identical particles whose self-propulsion speed is the harmonic mean self-propulsion speed of the mixture. With swapping, particles escape more quickly from clusters. As a consequence, Lc decreases with swapping rates and depends less strongly on diversity. We derive a dynamical equilibrium theory for the CSDs of binary and fully polydisperse systems. Similarly to the clustering behaviour of one-component models, our qualitative results for mixtures are expected to be universal across active matter. Using literature experimental values for the self-propulsion speed diversity of unicellular swimmers known as choanoflagellates, which naturally differentiate into slower and faster cells, we predict that the error in estimating their Lcvia one-component models which use the conventional arithmetic mean self-propulsion speed is around 30%.


Subject(s)
Cluster Analysis , Motion
7.
Soft Matter ; 17(8): 2050-2061, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33475129

ABSTRACT

The persistent motion of bacteria produces clusters with a stationary cluster size distribution (CSD). Here we develop a minimal model for bacteria in a narrow channel to assess the relative importance of motility diversity (i.e. polydispersity in motility parameters) and confinement. A mixture of run-and-tumble particles with a distribution of tumbling rates (denoted generically by α) is considered on a 1D lattice. Particles facing each other cross at constant rate, rendering the lattice quasi-1D. To isolate the role of diversity, the global average α stays fixed. For a binary mixture with no particle crossing, the average cluster size (Lc) increases with the diversity as lower-α particles trap higher-α ones for longer. At finite crossing rate, particles escape from the clusters sooner, making Lc smaller and the diversity less important, even though crossing can enhance demixing of particle types between the cluster and gas phases. If the crossing rate is increased further, the clusters become controlled by particle crossing. We also consider an experiment-based continuous distribution of tumbling rates, revealing similar physics. Using parameters fitted from experiments with Escherichia coli bacteria, we predict that the error in estimating Lc without accounting for polydispersity is around 60%. We discuss how to find a binary system with the same CSD as the fully polydisperse mixture. An effective theory is developed and shown to give accurate expressions for the CSD, the effective α, and the average fraction of mobile particles. We give reasons why our qualitative results are expected to be valid for other active matter models and discuss the changes that would result from polydispersity in the active speed rather than in the tumbling rate.


Subject(s)
Escherichia coli , Motion
8.
JMIR Res Protoc ; 9(8): e19001, 2020 Aug 24.
Article in English | MEDLINE | ID: mdl-32831183

ABSTRACT

BACKGROUND: In Pakistan, the prevalence of stunting in children younger than 5 years has remained above global critical levels over the past two decades, with the stunting rate being 40.2% in 2018. Children living in rural areas and in the poorest households suffer the most from stunting across the country-43.2% in rural areas and 51.4% in the lowest wealth quintile. As a continuing public health concern, it is essential that stunting prevention is a national priority in order to ensure human capital development, especially among the poorest households. OBJECTIVE: The primary objective of this study is to determine the effect of a medium quantity of a lipid-based nutrient supplement (LNS) combined with unconditional cash transfers and social and behavior change communication (SBCC) on reduction of stunting in children aged 6 to 23 months. METHODS: A 5-arm cluster randomized controlled trial will be conducted in the district of Rahim Yar Khan in Punjab, Pakistan. The intervention packages will be (1) cash only, (2) cash with LNS, (3) cash with SBCC, and (4) cash with SBCC and LNS. The control arm will receive routine standard of care. We will enroll children at 6 months of age and follow up on a monthly basis up to 24 months of age. A total of 2000 children, 400 in each arm, will be enrolled to detect a 20% reduction in the prevalence of stunting among children aged 24 months. Length, weight, food intake, compliance to interventions, morbidities, and other relevant data will be collected at enrollment and on a monthly basis over the period of 18 months. The process evaluation will assess acceptability of the interventions and potential barriers to implementation through focus group discussions and in-depth interviews with the target population and relevant stakeholders. Furthermore, a cost analysis will be conducted to assess the cost-effectiveness of each intervention package. RESULTS: The study protocol was approved by the Ethics Review Committee of Aga Khan University in Pakistan on January 4, 2017. Data collection began in May 2017 and was completed in July 2019. Data analyses are yet to be completed. This study will explore the effectiveness of intervention packages comprised of cash transfers from Benazir Income Support Programme with or without additional LNS and SBCC in preventing childhood stunting. We expect the results to be published in peer-reviewed journals by autumn of 2020. CONCLUSIONS: The findings of this trial will provide robust evidence as to which intervention packages can have significant effects on linear growth of children and design effective intervention packages to prevent stunting in children aged 6 to 23 months. TRIAL REGISTRATION: ClinicalTrials.gov NCT03299218; https://clinicaltrials.gov/ct2/show/NCT03299218. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/19001.

9.
Phys Rev E ; 101(6-1): 062607, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32688514

ABSTRACT

The run-and-tumble (RT) dynamics followed by bacterial swimmers gives rise first to a ballistic motion due to their persistence and later, through consecutive tumbles, to a diffusive process. Here we investigate how long it takes for a dilute swimmer suspension to reach the diffusive regime as well as what is the amplitude of the deviations from the diffusive dynamics. A linear time dependence of the mean-squared displacement (MSD) is insufficient to characterize diffusion and thus we also focus on the excess kurtosis of the displacement distribution. Four swimming strategies are considered: (i) the conventional RT model with complete reorientation after tumbling; (ii) the case of partial reorientation, characterized by a distribution of tumbling angles; (iii) a run-and-reverse model with rotational diffusion; and (iv) a RT particle where the tumbling rate depends on the stochastic concentration of an internal protein. By analyzing the associated kinetic equations for the probability density function and simulating the models, we find that for models (ii), (iii), and (iv) the relaxation to diffusion can take much longer than the mean time between tumble events, evidencing the existence of large tails in the particle displacements. Moreover, the excess kurtosis can assume large positive values. In model (ii) it is possible for some distributions of tumbling angles that the MSD reaches a linear time dependence but, still, the dynamics remains non-Gaussian for long times. This is also the case in model (iii) for small rotational diffusivity. For all models, the long-time diffusion coefficients are also obtained. The theoretical approach, which relies on eigenvalue and angular Fourier expansions of the van Hove function, is in excellent agreement with the simulations.

10.
Soft Matter ; 15(45): 9287-9299, 2019 Dec 07.
Article in English | MEDLINE | ID: mdl-31637388

ABSTRACT

We investigate binary mixtures undergoing phase separation after a second (deeper) temperature quench into two- and three-phase coexistence regions. The analysis is based on a lattice theory previously developed for gas-liquid separation in generic mixtures. Our previous results, which considered an arbitrary number of species and a single quench, showed that, due to slow changes in composition, dense colloidal mixtures can phase-separate in two stages. Moreover, the denser phase contains long-lived composition heterogeneities that originate as the interfaces of shrunk domains. Here we predict several new effects that arise after a second quench, mostly associated with the extent to which crowding can slow down 'fractionation', i.e. equilibration of compositions. They include long-lived regular arrangements of secondary domains; wetting of fractionated interfaces by oppositely fractionated layers; 'surface'-directed spinodal 'waves' propagating from primary interfaces; a 'dead zone' where no phase separation occurs; and, in the case of three-phase coexistence, filamentous morphologies arising out of secondary domains.

11.
J Chem Phys ; 149(20): 204902, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30501248

ABSTRACT

We analyze the critical gas-liquid phase behavior of arbitrary fluid mixtures in their coexistence region. We focus on the setting relevant for polydisperse colloids, where the overall density and composition of the system are being controlled, in addition to temperature. Our analysis uses the complete scaling formalism and thus includes pressure mixing effects in the mapping from thermodynamic fields to the effective fields of 3D Ising criticality. Because of fractionation, where mixture components are distributed unevenly across coexisting phases, the critical behavior is remarkably rich. We give scaling laws for a number of important loci in the phase diagram. These include the cloud and shadow curves, which characterise the onset of phase coexistence, a more general set of curves defined by fixing the fractional volumes of the coexisting phases to arbitrary values, and conventional coexistence curves of the densities of coexisting phases for fixed overall density. We identify suitable observables (distinct from the Yang-Yang anomalies discussed in the literature) for detecting pressure mixing effects. Our analytical predictions are checked against numerics using a set of mapping parameters fitted to simulation data for a polydisperse Lennard-Jones fluid, allowing us to highlight crossovers where pressure mixing becomes relevant close to the critical point.

12.
Phys Chem Chem Phys ; 19(33): 22509-22527, 2017 Aug 23.
Article in English | MEDLINE | ID: mdl-28809978

ABSTRACT

New insights into phase separation in colloidal suspensions are provided via a dynamical theory based on the polydisperse lattice-gas model. The model gives a simplified description of polydisperse colloids, incorporating a hard-core repulsion combined with polydispersity in the strength of the attraction between neighbouring particles. Our mean-field equations describe the local concentration evolution for each of an arbitrary number of species, and for an arbitrary overall composition of the system. We focus on the predictions for the dynamics of colloidal gas-liquid phase separation after a quench into the coexistence region. The critical point and the relevant spinodal curves are determined analytically, with the latter depending only on three moments of the overall composition. The results for the early-time spinodal dynamics show qualitative changes as one crosses a 'quenched' spinodal that excludes fractionation and so allows only density fluctuations at fixed composition. This effect occurs for dense systems, in agreement with a conjecture by Warren that, at high density, fractionation should be generically slow because it requires inter-diffusion of particles. We verify this conclusion by showing that the observed qualitative changes disappear when direct particle-particle swaps are allowed in the dynamics. Finally, the rich behaviour beyond the spinodal regime is examined, where we find that the evaporation of gas bubbles with strongly fractionated interfaces causes long-lived composition heterogeneities in the liquid phase; we introduce a two-dimensional density histogram method that allows such effects to be easily visualized for an arbitrary number of particle species.

13.
Article in English | MEDLINE | ID: mdl-25122402

ABSTRACT

The mechanical response of a circularly driven disk in a dissipative medium is considered. We focus on the role played by viscous friction in the spinning motion of the disk, especially on the effect called reverse rotation, where the intrinsic and orbital rotations are antiparallel. Contrary to what happens in the frictionless case, where steady reverse rotations are possible, we find that this dynamical behavior may exist only as a transient when dissipation is considered. Whether or not reverse rotations in fact occur depends on the initial conditions and on two parameters, one related to dragging, inertia, and driving, the other associated with the geometric configuration of the system. The critical value of this geometric parameter (separating the regions where reverse rotation is possible from those where it is forbidden) as a function of viscosity is well adjusted by a q-exponential function.


Subject(s)
Friction , Rotation , Surface Properties , Viscosity
14.
J Cheminform ; 3: 38, 2011 Oct 14.
Article in English | MEDLINE | ID: mdl-21999363

ABSTRACT

Computational Quantum Chemistry has developed into a powerful, efficient, reliable and increasingly routine tool for exploring the structure and properties of small to medium sized molecules. Many thousands of calculations are performed every day, some offering results which approach experimental accuracy. However, in contrast to other disciplines, such as crystallography, or bioinformatics, where standard formats and well-known, unified databases exist, this QC data is generally destined to remain locally held in files which are not designed to be machine-readable. Only a very small subset of these results will become accessible to the wider community through publication.In this paper we describe how the Quixote Project is developing the infrastructure required to convert output from a number of different molecular quantum chemistry packages to a common semantically rich, machine-readable format and to build respositories of QC results. Such an infrastructure offers benefits at many levels. The standardised representation of the results will facilitate software interoperability, for example making it easier for analysis tools to take data from different QC packages, and will also help with archival and deposition of results. The repository infrastructure, which is lightweight and built using Open software components, can be implemented at individual researcher, project, organisation or community level, offering the exciting possibility that in future many of these QC results can be made publically available, to be searched and interpreted just as crystallography and bioinformatics results are today.Although we believe that quantum chemists will appreciate the contribution the Quixote infrastructure can make to the organisation and and exchange of their results, we anticipate that greater rewards will come from enabling their results to be consumed by a wider community. As the respositories grow they will become a valuable source of chemical data for use by other disciplines in both research and education.The Quixote project is unconventional in that the infrastructure is being implemented in advance of a full definition of the data model which will eventually underpin it. We believe that a working system which offers real value to researchers based on tools and shared, searchable repositories will encourage early participation from a broader community, including both producers and consumers of data. In the early stages, searching and indexing can be performed on the chemical subject of the calculations, and well defined calculation meta-data. The process of defining more specific quantum chemical definitions, adding them to dictionaries and extracting them consistently from the results of the various software packages can then proceed in an incremental manner, adding additional value at each stage.Not only will these results help to change the data management model in the field of Quantum Chemistry, but the methodology can be applied to other pressing problems related to data in computational and experimental science.

SELECTION OF CITATIONS
SEARCH DETAIL