Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Funct Integr Genomics ; 23(3): 288, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653266

ABSTRACT

A Staphylococcus aureus isolate (SA01) obtained from bloodstream infection exhibited a remarkable drug resistance profile. In this study, we report the draft genome sequence of S. aureus ST 5 SA01, a multidrug-resistant isolate, and analyzed the genes associated with drug resistance and virulence. The genome sketch of S. aureus ST5 SA01 was sequenced with Illumina and annotated using the Prokka software. Rapid Annotation Subsystem Technology (RAST) was used to verify the gene functions in the genome subsystems. The Comprehensive Antibiotic Resistance Database (CARD) and Virulence Factor Database (VFDB) were used in the analysis. The RAST indicated a contribution of 25 proteins to host adenine, fibronectin-binding protein A (FnbA), and biofilm formation as an intercellular polysaccharide adhesive system (PIA). The MLST indicated that S. aureus ST 5 SA01 belongs to ST5 (CC5). In silico analyses also showed an extensive repertoire of genes associated with toxins, such as LukGH leukocidin, enterotoxins, and superantigen staphylococcal classes (SSL). The 11 genes for antimicrobial resistance in S. aureus ST 5 SA01 showed similarity and identity above ≥ 99% with nucleotide sequences deposited in GenBank. Although studies on ST5 clones in Brazil are scarce, monitoring the clone of S. aureus ST 5 SA01 is essential, as it has become a problem in pediatrics in several countries.


Subject(s)
Sepsis , Staphylococcus aureus , Child , Humans , Staphylococcus aureus/genetics , Multilocus Sequence Typing , Software
2.
Gene ; 795: 145781, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34153410

ABSTRACT

The Bifidobacterium longum 51A strain of isolated from feces of a healthy child, has demonstrated probiotic properties by in vivo and in vitro studies, which may be assigned to its production of metabolites such as acetate. Thus, through the study of comparative genomics, the present work sought to identify unique genes that might be related to the production of acetate. To perform the study, the DNA strain was sequenced using Illumina HiSeq technology, followed by assembly and manual curation of coding sequences. Comparative analysis was performed including 19 complete B. longum genomes available in Genbank/NCBI. In the phylogenetic analysis, the CECT 7210 and 157F strains of B. longum subsp. infantis aggregated within the subsp. longum cluster, suggesting that their taxonomic classification should be reviewed. The strain 51A of B. longum has 26 unique genes, six of which are possibly related to carbohydrate metabolism and acetate production. The phosphoketolase pathway from B. longum 51A showed a difference in acetyl-phosphate production. This result seems to corroborate the analysis of their unique genes, whose presence suggests the strain may use different sources of carbohydrates that allow a greater production of acetate and consequently offer benefits to the host health.


Subject(s)
Acetates/metabolism , Bifidobacterium longum/genetics , Bifidobacterium longum/metabolism , Carbohydrate Metabolism/genetics , Genes, Bacterial , Probiotics/metabolism , Base Sequence , Bifidobacterium longum/classification , Child , Computer Simulation , Feces/microbiology , Genomics , High-Throughput Nucleotide Sequencing , Humans , Phylogeny , Sequence Analysis, DNA
3.
BMC Genomics ; 21(1): 33, 2020 Jan 10.
Article in English | MEDLINE | ID: mdl-31924165

ABSTRACT

BACKGROUND: Spirochetal organisms of the Treponema genus are responsible for causing Treponematoses. Pathogenic treponemes is a Gram-negative, motile, spirochete pathogen that causes syphilis in human. Treponema pallidum subsp. endemicum (TEN) causes endemic syphilis (bejel); T. pallidum subsp. pallidum (TPA) causes venereal syphilis; T. pallidum subsp. pertenue (TPE) causes yaws; and T. pallidum subsp. Ccarateum causes pinta. Out of these four high morbidity diseases, venereal syphilis is mediated by sexual contact; the other three diseases are transmitted by close personal contact. The global distribution of syphilis is alarming and there is an increasing need of proper treatment and preventive measures. Unfortunately, effective measures are limited. RESULTS: Here, the genome sequences of 53 T. pallidum strains isolated from different parts of the world and a diverse range of hosts were comparatively analysed using pan-genomic strategy. Phylogenomic, pan-genomic, core genomic and singleton analysis disclosed the close connection among all strains of the pathogen T. pallidum, its clonal behaviour and showed increases in the sizes of the pan-genome. Based on the genome plasticity analysis of the subsets containing the subspecies T pallidum subsp. pallidum, T. pallidum subsp. endemicum and T. pallidum subsp. pertenue, we found differences in the presence/absence of pathogenicity islands (PAIs) and genomic islands (GIs) on subsp.-based study. CONCLUSIONS: In summary, we identified four pathogenicity islands (PAIs), eight genomic islands (GIs) in subsp. pallidum, whereas subsp. endemicum has three PAIs and seven GIs and subsp. pertenue harbours three PAIs and eight GIs. Concerning the presence of genes in PAIs and GIs, we found some genes related to lipid and amino acid biosynthesis that were only present in the subsp. of T. pallidum, compared to T. pallidum subsp. endemicum and T. pallidum subsp. pertenue.


Subject(s)
Syphilis/microbiology , Treponema pallidum/genetics , Genome, Bacterial/genetics , Genomic Islands/genetics , Humans , Phylogeny , Treponema pallidum/classification
4.
Dis Markers ; 2020: 9130719, 2020.
Article in English | MEDLINE | ID: mdl-33488847

ABSTRACT

Chagas disease is a neglected tropical disease caused by the parasite Trypanosoma cruzi. Despite the efforts and distinct methodologies, the search of antigens for diagnosis, vaccine, and drug targets for the disease is still needed. The present study is aimed at identifying possible antigens that could be used for diagnosis, vaccine, and drugs targets against T. cruzi using reverse vaccinology and molecular docking. The genomes of 28 T. cruzi strains available in GenBank (NCBI) were used to obtain the genomic core. Then, subtractive genomics was carried out to identify nonhomologous genes to the host in the core. A total of 2630 conserved proteins in 28 strains of T. cruzi were predicted using OrthoFinder and Diamond software, in which 515 showed no homology to the human host. These proteins were evaluated for their subcellular localization, from which 214 are cytoplasmic and 117 are secreted or present in the plasma membrane. To identify the antigens for diagnosis and vaccine targets, we used the VaxiJen software, and 14 nonhomologous proteins were selected showing high binding efficiency with MHC I and MHC II with potential for in vitro and in vivo tests. When these 14 nonhomologous molecules were compared against other trypanosomatids, it was found that the retrotransposon hot spot (RHS) protein is specific only for T. cruzi parasite suggesting that it could be used for Chagas diagnosis. Such 14 proteins were analyzed using the IEDB software to predict their epitopes in both B and T lymphocytes. Furthermore, molecular docking analysis was performed using the software MHOLline. As a result, we identified 6 possible T. cruzi drug targets that could interact with 4 compounds already known as antiparasitic activities. These 14 protein targets, along with 6 potential drug candidates, can be further validated in future studies, in vivo, regarding Chagas disease.


Subject(s)
Antiprotozoal Agents/pharmacology , Chagas Disease/diagnosis , Genome, Protozoan , Protozoan Vaccines/genetics , Trypanosoma cruzi/genetics , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antiprotozoal Agents/chemistry , Biomarkers/analysis , Chagas Disease/drug therapy , Chagas Disease/prevention & control , Drug Discovery , Genomics , Humans , Molecular Docking Simulation , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Vaccines/immunology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/immunology
5.
R Soc Open Sci ; 6(7): 190907, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31417766

ABSTRACT

Pneumonia is an infectious disease caused by bacteria, viruses or fungi that results in millions of deaths globally. Despite the existence of prophylactic methods against some of the major pathogens of the disease, there is no efficient prophylaxis against atypical agents such as Mycoplasma pneumoniae, a bacterium associated with cases of community-acquired pneumonia. Because of the morphological peculiarity of M. pneumoniae, which leads to an increased resistance to antibiotics, studies that prospectively investigate the development of vaccines and drug targets appear to be one of the best ways forward. Hence, in this paper, bioinformatics tools were used for vaccine and pharmacological prediction. We conducted comparative genomic analysis on the genomes of 88 M. pneumoniae strains, as opposed to a reverse vaccinology analysis, in relation to the capacity of M. pneumoniae proteins to bind to the major histocompatibility complex, revealing seven targets with immunogenic potential. Predictive cytoplasmic proteins were tested as potential drug targets by studying their structures in relation to other proteins, metabolic pathways and molecular anchorage, which identified five possible drug targets. These findings are a valuable addition to the development of vaccines and the selection of new in vivo drug targets that may contribute to further elucidating the molecular basis of M. pneumoniae-host interactions.

6.
J R Soc Interface ; 15(142)2018 05.
Article in English | MEDLINE | ID: mdl-29792307

ABSTRACT

Chancroid is a sexually transmitted infection (STI) caused by the Gram-negative bacterium Haemophilus ducreyi The control of chancroid is difficult and the only current available treatment is antibiotic therapy; however, antibiotic resistance has been reported in endemic areas. Owing to recent outbreaks of STIs worldwide, it is important to keep searching for new treatment strategies and preventive measures. Here, we applied reverse vaccinology and subtractive genomic approaches for the in silico prediction of potential vaccine and drug targets against 28 strains of H. ducreyi We identified 847 non-host homologous proteins, being 332 exposed/secreted/membrane and 515 cytoplasmic proteins. We also checked their essentiality, functionality and virulence. Altogether, we predicted 13 candidate vaccine targets and three drug targets, where two vaccines (A01_1275, ABC transporter substrate-binding protein; and A01_0690, Probable transmembrane protein) and three drug targets (A01_0698, Purine nucleoside phosphorylase; A01_0702, Transcription termination factor; and A01_0677, Fructose-bisphosphate aldolase class II) are harboured by pathogenicity islands. Finally, we applied a molecular docking approach to analyse each drug target and selected ZINC77257029, ZINC43552589 and ZINC67912117 as promising molecules with favourable interactions with the target active site residues. Altogether, the targets identified here may be used in future strategies to control chancroid worldwide.


Subject(s)
Bacterial Proteins , Chancroid , Genome, Bacterial , Genomic Islands , Haemophilus Vaccines , Haemophilus ducreyi , Virulence Factors , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Chancroid/genetics , Chancroid/immunology , Chancroid/prevention & control , Haemophilus Vaccines/genetics , Haemophilus Vaccines/immunology , Haemophilus Vaccines/metabolism , Haemophilus ducreyi/genetics , Haemophilus ducreyi/immunology , Haemophilus ducreyi/metabolism , Haemophilus ducreyi/pathogenicity , Humans , Vaccinology , Virulence Factors/genetics , Virulence Factors/immunology , Virulence Factors/metabolism
7.
Stand Genomic Sci ; 11: 39, 2016.
Article in English | MEDLINE | ID: mdl-27274785

ABSTRACT

Streptococcus agalactiae, also referred to as Group B Streptococcus, is a frequent resident of the rectovaginal tract in humans, and a major cause of neonatal infection. The pathogen can also infect adults with underlying disease, particularly the elderly and immunocompromised ones. In addition, S. agalactiae is a known fish pathogen, which compromises food safety and represents a zoonotic hazard. This study provides valuable structural, functional and evolutionary genomic information of a human S. agalactiae serotype Ia (ST-103) GBS85147 strain isolated from the oropharynx of an adult patient from Rio de Janeiro, thereby representing the first human isolate in Brazil. We used the Ion Torrent PGM platform with the 200 bp fragment library sequencing kit. The sequencing generated 578,082,183 bp, distributed among 2,973,022 reads, resulting in an approximately 246-fold mean coverage depth and was assembled using the Mira Assembler v3.9.18. The S. agalactiae strain GBS85147 comprises of a circular chromosome with a final genome length of 1,996,151 bp containing 1,915 protein-coding genes, 18 rRNA, 63 tRNA, 2 pseudogenes and a G + C content of 35.48 %.

SELECTION OF CITATIONS
SEARCH DETAIL
...