ABSTRACT
Rotavirus (RV) and Norovirus (NV) are the main viral etiologic agents of acute gastroenteritis (AG), a serious pediatric condition associated with significant death rates and long-term complications. Anti-RV vaccination has been proved efficient in the reduction of severe AG worldwide, however, the available vaccines are all attenuated and have suboptimal efficiencies in developing countries, where AG leads to substantial disease burden. On the other hand, no NV vaccine has been licensed so far. Therefore, we used immunoinformatics tools to develop a multi-epitope vaccine (ChRNV22) to prevent severe AG by RV and NV. Epitopes were predicted against 17 prevalent genotypes of four structural proteins (NV's VP1, RV's VP4, VP6 and VP7), and then assembled in a chimeric protein, with two small adjuvant sequences (tetanus toxin P2 epitope and a conserved sequence of RV's enterotoxin, NSP4). Simulations of the immune response and interactions with immune receptors indicated the immunogenic properties of ChRNV22, including a Th1-biased response. In silico search for putative host-homologous, allergenic and toxic regions also indicated the vaccine safety. In summary, we developed a multi-epitope vaccine against different NV and RV genotypes that seems promising for the prevention of severe AG, which will be further assessed by in vivo tests.
Subject(s)
Norovirus , Rotavirus , Vaccines , Child , Humans , Rotavirus/genetics , Norovirus/genetics , EpitopesABSTRACT
Background: Corynebacterium silvaticum is a pathogenic, gram-positive bacterial species that causes caseous lymphadenitis in wild boars, domestic pigs and roe deer in Western Europe. It can affect animal production and cause zoonosis. Genome analysis has suggested that one strain from Portugal and one from Austria could probably produce the diphtheria toxin (DT), which inhibits protein synthesis and can cause death. Methods: To further investigate the species genetic diversity and probable production of DT by Portuguese strains, eight isolates from this country were sequenced and compared to 38 public ones. Results: Strains from Portugal are monophyletic, nearly identical, form a unique cluster and have 27 out of 36 known Corynebacterium virulence or niche factors. All of them lack a frameshift in the tox gene and were suggested to produce DT. A phylogenetic analysis shows that the species has diverged into two clades. Clade 1 is composed of strains that were suggested to have the ability to produce DT, represented by the monophyletic strains from Portugal and strain 05-13 from Austria. Clade 2 is composed of strains unable to produce DT due to a frameshifted tox gene. The second clade is represented by strains from Austria, Germany and Switzerland. Ten genome clusters were detected, in which strains from Germany are the most diverse. Strains from Portugal belong to an exclusive cluster. The pangenome has 2,961 proteins and is nearly closed (α = 0.968). Exclusive genes shared by clusters 1 and 2, and Portuguese strains are probably not related to disease manifestation as they share the same host but could play a role in their extra-host environmental adaptation. These results show the potential of the species to cause zoonosis, possibly diphtheria. The identified clusters, exclusively shaded genes, and exclusive STs identified in Portugal could be applied in the identification and epidemiology of the species.
Subject(s)
Deer , Diphtheria Toxin , Swine , Animals , Diphtheria Toxin/genetics , Portugal/epidemiology , Phylogeny , Deer/metabolism , Corynebacterium , Sus scrofa/metabolism , ZoonosesABSTRACT
Histoplasma capsulatum is a thermodymorphic fungus that causes histoplasmosis, a systemic mycosis that presents different clinical manifestations, ranging from self-limiting to acute lung infection, chronic lung infection and disseminated infection. Usually, it affects severely immunocompromised patients although immunocompetent patients can also be infected. Currently, there are no vaccines to prevent histoplasmosis and the available antifungal treatment presents moderate to high toxicity. Additionally, there are few options of antifungal drugs. Thus, the aim of this study was to predict possible protein targets for the construction of potential vaccine candidates and predict potential drug targets against H. capsulatum. Whole genome sequences from four previously published H. capsulatum strains were analyzed and submitted to different bioinformatic approaches such as reverse vaccinology and subtractive genomics. A total of four proteins were characterized as good protein candidates (vaccine antigens) for vaccine development, three of which are membrane-bound and one is secreted. In addition, it was possible to predict four cytoplasmic proteins which were classified as good protein candidates and, through molecular docking performed for each identified target, we found four natural compounds that showed favorable interactions with our target proteins. Our study can help in the development of potential vaccines and new drugs that can change the current scenario of the treatment and prevention of histoplasmosis.
ABSTRACT
The Brucellaceae family comprises microorganisms similar both phenotypically and genotypically, making it difficult to identify the etiological agent of these infections. This study reports the first isolation, identification, and characterization of Pseudochrobactrum saccharolyticum (strain 115) from Latin America. Strain 115 was isolated in 2007 from a bovine in Brazil and was initially classified as Brucella spp. by classical microbiological tests and bcsp31 PCR. The antimicrobial susceptibility of strain 115 was tested against drugs used to treat human brucellosis by minimal inhibitory concentration test. Subsequently, the whole genome of the strain was sequenced, assembled, and characterized. Phylogenetic trees built from 16S rRNA and recA gene sequences enabled the classification of strain 115 as Pseudochrobactrum spp. Phylogenomic analysis using Single Nucleotide Polymorphisms and Average Nucleotide Identity allowed the classification of the strain as P. saccharolyticum. Additionally, a Tetra Correlation Search identified one related genome from the same species, which was compared with strain 115 by analyzing genomic islands. This is the first identification and whole-genome sequence of P. saccharolyticum in Latin America and highlights a challenge in the diagnosis of bovine brucellosis, which could be solved by including the sequencing of 16S rRNA and recA genes in routine diagnostics.
Subject(s)
Brucellaceae , Animals , Cattle , Humans , RNA, Ribosomal, 16S/genetics , Phylogeny , Latin America , Brucellaceae/genetics , DNA, Bacterial/geneticsABSTRACT
Mapping B and T cell epitopes constitutes an important action for peptide vaccine design. PLD and CP40 virulence factors of Corynebacterium pseudotuberculosis biovar ovis, a causal agent of Caseous Lymphadenitis, have been evaluated in a murine model as good candidates for vaccine development. Therefore, the goal of this work was to in silico analyze B and T cell epitopes of the PLD and CP40 proteins of a Mexican isolate of Corynebacterium pseudotuberculosis ovis. The Immune Epitope Data Base and Resource website was employed to predict the linear and conformational B-cell, T CD4+, and T CD8+ epitopes of PLD and CP40 proteins of Corynebacterium pseudotuberculosis ovis Mexican strain 2J-L. Fifty B cell epitopes for PLD 2J-L and forty-seven for CP40 2J-L were estimated. In addition, T CD4+ and CD8+ cell epitopes were predicted for PLD 2J-L (MHC I:16 epitopes, MHC II:10 epitopes) and CP40 2J-L (MHC I: 15 epitopes, MHC II: 13 epitopes). This study provides epitopes, paying particular attention to sequences selected by different predictor programs and overlap sequences as B and T cell epitopes. PLD 2J-L and CP40 2J-L protein epitopes may aid in the design of a promising peptide-based vaccine against Caseous Lymphadenitis in Mexico.
Subject(s)
Corynebacterium Infections , Corynebacterium pseudotuberculosis , Lymphadenitis , Animals , Mice , Sheep , Epitopes, T-Lymphocyte , Mexico , Computational Biology , Corynebacterium Infections/prevention & control , Protein Subunit VaccinesABSTRACT
Antibiotic resistance is one of the biggest health challenges of our time. We are now facing a post-antibiotic era in which microbial infections, currently treatable, could become fatal. In this scenario, antimicrobial peptides such as bacteriocins represent an alternative solution to traditional antibiotics because they are produced by many organisms and can inhibit bacteria, fungi, and/or viruses. Herein, we assessed the antimicrobial activity and biotechnological potential of 54 Streptococcus agalactiae strains isolated from bovine mastitis. Deferred plate antagonism assays revealed an inhibition spectrum focused on species of the genus Streptococcus-namely, S. pyogenes, S. agalactiae, S. porcinus, and S. uberis. Three genomes were successfully sequenced, allowing for their taxonomic confirmation via a multilocus sequence analysis (MLSA). Virulence potential and antibiotic resistance assessments showed that strain LGMAI_St_08 is slightly more pathogenic than the others. Moreover, the mreA gene was identified in the three strains. This gene is associated with resistance against erythromycin, azithromycin, and spiramycin. Assessments for secondary metabolites and antimicrobial peptides detected the bacteriocin zoocin A. Finally, comparative genomics evidenced high similarity among the genomes, with more significant similarity between the LGMAI_St_11 and LGMAI_St_14 strains. Thus, the current study shows promising antimicrobial and biotechnological potential for the Streptococcus agalactiae strains.
ABSTRACT
BACKGROUND: Lactobacillus crispatus is the dominant species in the vaginal microbiota associated with health and considered a homeostasis biomarker. Interestingly, some strains are even used as probiotics. However, the genetic mechanisms of L. crispatus involved in the control of the vaginal microbiome and protection against bacterial vaginosis (BV) are not entirely known. To further investigate these mechanisms, we sequenced and characterized the first four L. crispatus genomes from vaginal samples from Brazilian women and used genome-wide association study (GWAS) and comparative analyses to identify genetic mechanisms involved in healthy or BV conditions and selective pressures acting in the vaginal microbiome. METHODS: The four genomes were sequenced, assembled using ten different strategies and automatically annotated. The functional characterization was performed by bioinformatics tools comparing with known probiotic strains. Moreover, it was selected one representative strain (L. crispatus CRI4) for in vitro detection of phages by electron microscopy. Evolutionary analysis, including phylogeny, GWAS and positive selection were performed using 46 public genomes strains representing health and BV conditions. RESULTS: Genes involved in probiotic effects such as lactic acid production, hydrogen peroxide, bacteriocins, and adhesin were identified. Three hemolysins and putrescine production were predicted, although these features are also present in other probiotic strains. The four genomes presented no plasmids, but 14 known families insertion sequences and several prophages were detected. However, none of the mobile genetic elements contained antimicrobial resistance genes. The genomes harbor a CRISPR-Cas subtype II-A system that is probably inactivated due to fragmentation of the genes csn2 and cas9. No genomic feature was associated with a health condition, perhaps due to its multifactorial characteristic. Five genes were identified as under positive selection, but the selective pressure remains to be discovered. In conclusion, the Brazilian strains investigated in this study present potential protective properties, although in vitro and in vivo studies are required to confirm their efficacy and safety to be considered for human use.
ABSTRACT
Chagas disease is a neglected tropical disease caused by the parasite Trypanosoma cruzi. Despite the efforts and distinct methodologies, the search of antigens for diagnosis, vaccine, and drug targets for the disease is still needed. The present study is aimed at identifying possible antigens that could be used for diagnosis, vaccine, and drugs targets against T. cruzi using reverse vaccinology and molecular docking. The genomes of 28 T. cruzi strains available in GenBank (NCBI) were used to obtain the genomic core. Then, subtractive genomics was carried out to identify nonhomologous genes to the host in the core. A total of 2630 conserved proteins in 28 strains of T. cruzi were predicted using OrthoFinder and Diamond software, in which 515 showed no homology to the human host. These proteins were evaluated for their subcellular localization, from which 214 are cytoplasmic and 117 are secreted or present in the plasma membrane. To identify the antigens for diagnosis and vaccine targets, we used the VaxiJen software, and 14 nonhomologous proteins were selected showing high binding efficiency with MHC I and MHC II with potential for in vitro and in vivo tests. When these 14 nonhomologous molecules were compared against other trypanosomatids, it was found that the retrotransposon hot spot (RHS) protein is specific only for T. cruzi parasite suggesting that it could be used for Chagas diagnosis. Such 14 proteins were analyzed using the IEDB software to predict their epitopes in both B and T lymphocytes. Furthermore, molecular docking analysis was performed using the software MHOLline. As a result, we identified 6 possible T. cruzi drug targets that could interact with 4 compounds already known as antiparasitic activities. These 14 protein targets, along with 6 potential drug candidates, can be further validated in future studies, in vivo, regarding Chagas disease.
Subject(s)
Antiprotozoal Agents/pharmacology , Chagas Disease/diagnosis , Genome, Protozoan , Protozoan Vaccines/genetics , Trypanosoma cruzi/genetics , Antigens, Protozoan/genetics , Antigens, Protozoan/immunology , Antiprotozoal Agents/chemistry , Biomarkers/analysis , Chagas Disease/drug therapy , Chagas Disease/prevention & control , Drug Discovery , Genomics , Humans , Molecular Docking Simulation , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Protozoan Vaccines/immunology , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/immunologyABSTRACT
Pneumonia is an infectious disease caused by bacteria, viruses or fungi that results in millions of deaths globally. Despite the existence of prophylactic methods against some of the major pathogens of the disease, there is no efficient prophylaxis against atypical agents such as Mycoplasma pneumoniae, a bacterium associated with cases of community-acquired pneumonia. Because of the morphological peculiarity of M. pneumoniae, which leads to an increased resistance to antibiotics, studies that prospectively investigate the development of vaccines and drug targets appear to be one of the best ways forward. Hence, in this paper, bioinformatics tools were used for vaccine and pharmacological prediction. We conducted comparative genomic analysis on the genomes of 88 M. pneumoniae strains, as opposed to a reverse vaccinology analysis, in relation to the capacity of M. pneumoniae proteins to bind to the major histocompatibility complex, revealing seven targets with immunogenic potential. Predictive cytoplasmic proteins were tested as potential drug targets by studying their structures in relation to other proteins, metabolic pathways and molecular anchorage, which identified five possible drug targets. These findings are a valuable addition to the development of vaccines and the selection of new in vivo drug targets that may contribute to further elucidating the molecular basis of M. pneumoniae-host interactions.
ABSTRACT
Chancroid is a sexually transmitted infection (STI) caused by the Gram-negative bacterium Haemophilus ducreyi The control of chancroid is difficult and the only current available treatment is antibiotic therapy; however, antibiotic resistance has been reported in endemic areas. Owing to recent outbreaks of STIs worldwide, it is important to keep searching for new treatment strategies and preventive measures. Here, we applied reverse vaccinology and subtractive genomic approaches for the in silico prediction of potential vaccine and drug targets against 28 strains of H. ducreyi We identified 847 non-host homologous proteins, being 332 exposed/secreted/membrane and 515 cytoplasmic proteins. We also checked their essentiality, functionality and virulence. Altogether, we predicted 13 candidate vaccine targets and three drug targets, where two vaccines (A01_1275, ABC transporter substrate-binding protein; and A01_0690, Probable transmembrane protein) and three drug targets (A01_0698, Purine nucleoside phosphorylase; A01_0702, Transcription termination factor; and A01_0677, Fructose-bisphosphate aldolase class II) are harboured by pathogenicity islands. Finally, we applied a molecular docking approach to analyse each drug target and selected ZINC77257029, ZINC43552589 and ZINC67912117 as promising molecules with favourable interactions with the target active site residues. Altogether, the targets identified here may be used in future strategies to control chancroid worldwide.
Subject(s)
Bacterial Proteins , Chancroid , Genome, Bacterial , Genomic Islands , Haemophilus Vaccines , Haemophilus ducreyi , Virulence Factors , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Chancroid/genetics , Chancroid/immunology , Chancroid/prevention & control , Haemophilus Vaccines/genetics , Haemophilus Vaccines/immunology , Haemophilus Vaccines/metabolism , Haemophilus ducreyi/genetics , Haemophilus ducreyi/immunology , Haemophilus ducreyi/metabolism , Haemophilus ducreyi/pathogenicity , Humans , Vaccinology , Virulence Factors/genetics , Virulence Factors/immunology , Virulence Factors/metabolismABSTRACT
In this work, we describe a set of features of Corynebacterium auriscanis CIP 106629 and details of the draft genome sequence and annotation. The genome comprises a 2.5-Mbp-long single circular genome with 1,797 protein-coding genes, 5 rRNA, 50 tRNA, and 403 pseudogenes, with a G+C content of 58.50%.
ABSTRACT
Streptococcus agalactiae, also referred to as Group B Streptococcus, is a frequent resident of the rectovaginal tract in humans, and a major cause of neonatal infection. The pathogen can also infect adults with underlying disease, particularly the elderly and immunocompromised ones. In addition, S. agalactiae is a known fish pathogen, which compromises food safety and represents a zoonotic hazard. This study provides valuable structural, functional and evolutionary genomic information of a human S. agalactiae serotype Ia (ST-103) GBS85147 strain isolated from the oropharynx of an adult patient from Rio de Janeiro, thereby representing the first human isolate in Brazil. We used the Ion Torrent PGM platform with the 200 bp fragment library sequencing kit. The sequencing generated 578,082,183 bp, distributed among 2,973,022 reads, resulting in an approximately 246-fold mean coverage depth and was assembled using the Mira Assembler v3.9.18. The S. agalactiae strain GBS85147 comprises of a circular chromosome with a final genome length of 1,996,151 bp containing 1,915 protein-coding genes, 18 rRNA, 63 tRNA, 2 pseudogenes and a G + C content of 35.48 %.
ABSTRACT
The genus Francisella is composed of Gram-negative, pleomorphic, strictly aerobic and non-motile bacteria, which are capable of infecting a variety of terrestrial and aquatic animals, among which Francisella noatunensis subsp. orientalis stands out as the causative agent of pyogranulomatous and granulomatous infections in fish. Accordingly, F. noatunensis subsp. orientalis is responsible for high mortality rates in freshwater fish, especially Nile Tilapia. In the current study, we present the genome sequences of F. noatunensis subsp. orientalis strains FNO12, FNO24 and FNO190. The genomes include one circular chromosome of 1,859,720 bp, consisting of 32 % GC content, 1538 coded proteins and 363 pseudogenes for FNO12; one circular chromosome of 1,862,322 bp, consisting of 32 % GC content, 1537 coded proteins and 365 pseudogenes for FNO24; and one circular chromosome of 1,859,595 bp, consisting of 32 % GC content, 1539 coded proteins and 362 pseudogenes for FNO190. All genomes have similar genetic content, implicating a clonal-like behavior for this species.
ABSTRACT
In this work, we present the complete genome sequence of Corynebacterium ulcerans strain 210932, isolated from a human. The species is an emergent pathogen that infects a variety of wild and domesticated animals and humans. It is associated with a growing number of cases of a diphtheria-like disease around the world.
ABSTRACT
With the advent of high-throughput DNA sequencing platforms, there has been a reduction in the cost and time of sequencing. With these advantages, new challenges have emerged, such as the handling of large amounts of data, quality assessment, and the assembly of short reads. Currently, benchtop high-throughput sequencers enable the genomes of prokaryotic organisms to be sequenced within two hours with a reduction in coverage compared with the SOLiD, Illumina and 454 FLX Titanium platforms, making it necessary to evaluate the efficiency of less expensive benchtop instruments for prokaryotic genomics. In the present work, we evaluate and propose a methodology for the use of the Ion Torrent PGM platform for decoding the gram-positive bacterium Corynebacterium pseudotuberculosis, for which 15 complete genome sequences have already been deposited based on fragment and mate-paired libraries with a 3-kb insert size. Despite the low coverage, a single sequencing run using a mate-paired library generated 39 scaffolds after de novo assembly without data curation. This result is superior to that obtained by sequencing using libraries generated from fragments marketed by the equipment's manufacturer, as well as that observed for mate-pairs sequenced by SOLiD. The generated sequence added an extra 91kb to the genome available at NCBI.
Subject(s)
Corynebacterium pseudotuberculosis/genetics , Genomics/methodsABSTRACT
Corynebacterium pseudotuberculosis is of major veterinary importance because it affects many animal species, causing economically significant livestock diseases and losses. Therefore, the genomic sequencing of various lines of this organism, isolated from different hosts, will aid in the development of diagnostic methods and new prevention and treatment strategies and improve our knowledge of the biology of this microorganism. In this study, we present the genome of C. pseudotuberculosis Cp31, isolated from a buffalo in Egypt.
Subject(s)
Corynebacterium pseudotuberculosis/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Animals , Buffaloes/microbiology , Corynebacterium pseudotuberculosis/isolation & purification , Egypt , Molecular Sequence DataABSTRACT
Exiguobacterium antarcticum is a psychotropic bacterium isolated for the first time from microbial mats of Lake Fryxell in Antarctica. Many organisms of the genus Exiguobacterium are extremophiles and have properties of biotechnological interest, e.g., the capacity to adapt to cold, which make this genus a target for discovering new enzymes, such as lipases and proteases, in addition to improving our understanding of the mechanisms of adaptation and survival at low temperatures. This study presents the genome of E. antarcticum B7, isolated from a biofilm sample of Ginger Lake on King George Island, Antarctic peninsula.
Subject(s)
Bacillales/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Genome, Bacterial , Sequence Analysis, DNA , Antarctic Regions , Bacillales/isolation & purification , Bacillales/physiology , Biofilms/growth & development , Fresh Water/microbiology , Islands , Lakes , Molecular Sequence DataABSTRACT
In this work, we report the complete genome sequence of a Corynebacterium pseudotuberculosis PAT10 isolate, collected from a lung abscess in an Argentine sheep in Patagonia, whose pathogen also required an investigation of its pathogenesis. Thus, the analysis of the genome sequence offers a means to better understanding of the molecular and genetic basis of virulence of this bacterium.
Subject(s)
Corynebacterium Infections/veterinary , Corynebacterium pseudotuberculosis/genetics , Genome, Bacterial , Lung Abscess/microbiology , Sheep Diseases/microbiology , Animals , Argentina , Base Sequence , Corynebacterium pseudotuberculosis/isolation & purification , Corynebacterium pseudotuberculosis/pathogenicity , Molecular Sequence Data , Sheep , VirulenceABSTRACT
Phage display technology has advanced considerably since its creation, and the number of research projects using this technique is constantly increasing, generating numerous antibody and antigen libraries. These libraries, besides expediting library screening, improving selection methods and allowing evaluation of novel applications, have great potential for the development of new vaccines, drugs and diagnosis tests. Consequently, patent registries for the protection of these sequences are essential.