Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Chem Neurosci ; 11(9): 1270-1282, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32283014

ABSTRACT

Vascular endothelial growth factor B (VEGFB) is a pleiotropic trophic factor, which in contrast to the closely related VEGFA is known to have a limited effect on angiogenesis. VEGFB improves survival in various tissues including the nervous system, where the effect was observed mainly for peripheral neurons. The neurotrophic effect of VEGFB on central nervous system neurons has been less investigated. Here we demonstrated that VEGFB promotes neurite outgrowth from primary cerebellar granule, hippocampal, and retinal neurons in vitro. VEGFB protected hippocampal and retinal neurons from both oxidative stress and glutamate-induced neuronal death. The VEGF receptor 1 (VEGFR1) is required for VEGFB-induced neurotrophic and neuroprotective effects. Using a structure-based approach, we designed short peptides, termed Vefin1-7, mimicking the binding interface of VEGFB to VEGFR1. Vefins were analyzed for their secondary structure and binding to VEGF receptors and compared with previously described peptides derived from VEGFA, another ligand of VEGFR1. We show that Vefins have neurotrophic and neuroprotective effects on primary hippocampal, cerebellar granule, and retinal neurons in vitro with potencies comparable to VEGFB. Similar to VEGFB, Vefins were not mitogenic for MCF-7 cancer cells. Furthermore, one of the peptides, Vefin7, even dose-dependently inhibited the proliferation of MCF-7 cells in vitro. Unraveling the neurotrophic and neuroprotective potentials of VEGFB, the only nonangiogenic factor of the VEGF family, is promising for the development of neuroprotective peptide-based therapies.


Subject(s)
Vascular Endothelial Growth Factor B , Vascular Endothelial Growth Factor Receptor-1 , Central Nervous System , Neurons , Peptides/pharmacology
2.
Article in English | MEDLINE | ID: mdl-30529002

ABSTRACT

Attention-deficit/hyperactivity disorder (ADHD) is a psychiatric disorder characterized by inattention, aberrant impulsivity, and hyperactivity. Although the underlying pathophysiology of ADHD remains unclear, dopamine and norepinephrine signaling originating from the ventral tegmental area (VTA) and locus coeruleus (LC) is thought to be critically involved. In this study, we employ Designer Receptor Exclusively Activated by Designer Drugs (DREADDs) together with the mouse 5-Choice Serial Reaction Time Task (5-CSRTT) to investigate the necessary roles of these catecholamines in ADHD-related behaviors, including attention, impulsivity, and motivation. By selective inhibition of tyrosine hydroxylase (TH)-positive VTA dopamine neurons expressing the Gi-coupled DREADD (hM4Di), we observed a marked impairment of effort-based motivation and subsequently speed and overall vigor of responding. At the highest clozapine N-oxide (CNO) dose tested (i.e. 2 mg/kg) to activate hM4Di, we detected a reduction in locomotor activity. DREADD-mediated inhibition of LC norepinephrine neurons reduced attentional performance in a variable stimulus duration test designed to increase task difficulty, specifically by increasing trials omissions, reducing mean score, and visual processing speed. These findings show that VTA dopamine and LC norepinephrine neurons differentially affect attention, impulsive and motivational control. In addition, this study highlights how molecular genetic probing of selective catecholamine circuits can provide valuable insights into the mechanisms underlying ADHD-relevant behaviors.


Subject(s)
Dopamine/metabolism , Neurons/metabolism , Norepinephrine/metabolism , Animals , Attention/drug effects , Attention/physiology , Genetic Techniques , Impulsive Behavior/drug effects , Impulsive Behavior/physiology , Male , Mice, Inbred C57BL , Mice, Transgenic , Motivation/drug effects , Motivation/physiology , Motor Activity/drug effects , Motor Activity/physiology , Neurons/drug effects , Neuropsychological Tests , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism , Ventral Tegmental Area/drug effects , Ventral Tegmental Area/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL