Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Psychophysiology ; 61(2): e14452, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37787386

ABSTRACT

In recent years, steady-state visual evoked potentials (SSVEPs) became an increasingly valuable tool to investigate neural dynamics of competitive attentional interactions and brain-computer interfaces. This is due to their good signal-to-noise ratio, allowing for single-trial analysis, and their ongoing oscillating nature that enables to analyze temporal dynamics of facilitation and suppression. Given the popularity of SSVEPs, it is surprising that only a few studies looked at the cortical sources of these responses. This is in particular the case when searching for studies that assessed the cortical sources of attentional SSVEP amplitude modulations. To address this issue, we used a typical spatial attention task and recorded neuromagnetic fields (MEG) while presenting frequency-tagged stimuli in the left and right visual fields, respectively. Importantly, we controlled for attentional deployment in a baseline period before the shifting cue. Subjects either attended to a central fixation cross or to two peripheral stimuli simultaneously. Results clearly showed that signal sources and attention effects were restricted to the early visual cortex: V1, V2, hMT+, precuneus, occipital-parietal, and inferior-temporal cortex. When subjects attended to central fixation first, shifting attention to one of the peripheral stimuli resulted in a significant activation increase for the to-be-attended stimulus with no activation decrease for the to-be-ignored stimulus in hMT+ and inferio-temporal cortex, but significant SSVEF decreases from V1 to occipito-parietal cortex. When attention was first deployed to both rings, shifting attention away from one ring basically resulted in a significant activation decrease in all areas for the then-to-be-ignored stimulus.


Subject(s)
Evoked Potentials, Visual , Visual Cortex , Humans , Visual Cortex/physiology , Photic Stimulation , Visual Fields , Magnetic Fields , Electroencephalography
2.
Sci Rep ; 12(1): 2652, 2022 02 16.
Article in English | MEDLINE | ID: mdl-35173252

ABSTRACT

Over the course of evolution, the human brain has been shaped to prioritize cues that signal potential danger. Thereby, the brain does not only favor species-specific prepared stimulus sets such as snakes or spiders but can learn associations between new cues and aversive outcomes. One important mechanism to achieve this is associated with learning induced plasticity changes in sensory cortex that optimizes the representation of motivationally relevant sensory stimuli. Animal studies have shown that the modulation of gamma band oscillations predicts plasticity changes in sensory cortices by shifting neurons' responses to fear relevant features as acquired by Pavlovian fear conditioning. Here, we report conditioned gamma band modulations in humans during fear conditioning of orthogonally oriented sine gratings representing fear relevant and irrelevant conditioned cues. Thereby, pairing of a sine grating with an aversive loud noise not only increased short latency (during the first 180 ms) evoked visual gamma band responses, but was also accompanied by strong gamma power reductions for the fear irrelevant control grating. The current findings will be discussed in the light of recent neurobiological models of plasticity changes in sensory cortices and classic learning models such as the Rescorla-Wagner framework.


Subject(s)
Fear/physiology , Learning/physiology , Magnetoencephalography/methods , Neuronal Plasticity , Visual Cortex/physiology , Adult , Animals , Conditioning, Classical/physiology , Cues , Evoked Potentials, Visual/physiology , Female , Humans , Male , Species Specificity , Young Adult
3.
Biology (Basel) ; 10(8)2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34440033

ABSTRACT

Since the first half of the twentieth century, numerous studies have been conducted on how the visual cortex encodes basic image features. One of the hallmarks of basic feature extraction is the phenomenon of orientation selectivity, of which the underlying neuronal-level computational mechanisms remain partially unclear despite being intensively investigated. In this work we present a reduced visual system model (RVSM) of the first level of scene analysis, involving the retina, the lateral geniculate nucleus and the primary visual cortex (V1), showing orientation selectivity. The detection core of the RVSM is the neuromorphic spike-decoding structure MNSD, which is able to learn and recognize parallel spike sequences and considerably resembles the neuronal microcircuits of V1 in both topology and operation. This structure is equipped with plasticity of intrinsic excitability to embed recent findings about V1 operation. The RVSM, which embeds 81 groups of MNSD arranged in 4 oriented columns, is tested using sets of rotated Gabor patches as input. Finally, synthetic visual evoked activity generated by the RVSM is compared with real neurophysiological signal from V1 area: (1) postsynaptic activity of human subjects obtained by magnetoencephalography and (2) spiking activity of macaques obtained by multi-tetrode arrays. The system is implemented using the NEST simulator. The results attest to a good level of resemblance between the model response and real neurophysiological recordings. As the RVSM is available online, and the model parameters can be customized by the user, we propose it as a tool to elucidate the computational mechanisms underlying orientation selectivity.

4.
Psychophysiology ; 58(8): e13849, 2021 08.
Article in English | MEDLINE | ID: mdl-34031900

ABSTRACT

Different levels of threat imminence elicit distinct computational strategies reflecting how the organism interacts with its environment in order to guarantee survival. Thereby, parasympathetically driven orienting and inhibition of on-going behavior in post-encounter situations and defense reactions in circa-strike conditions associated with sympathetically driven action preparation are typically observed across species. Here, we show that healthy humans are characterized by markedly variable individual orienting or defense response tendencies as indexed by differential heart rate (HR) changes during the passive viewing of unpleasant pictures. Critically, these HR response tendencies predict neural gain modulations in cortical attention and preparatory motor circuits as measured by neuromagnetic steady-state visual evoked fields (ssVEFs) and induced beta-band (19-30 Hz) desynchronization, respectively. Decelerative HR orienting responses were associated with increased ssVEF power in the parietal cortex and reduced beta-band desynchronization in pre-motor and motor areas. However, accelerative HR defense response tendencies covaried with reduced ssVEF power in the parietal cortex and lower beta-band desynchronization in cortical motor circuits. These results show that neural gain in attention- and motor-relevant brain areas is modulated by HR indexed threat imminence during the passive viewing of unpleasant pictures. The observed mutual ssVEF and beta-band power modulations in attention and motor brain circuits support the idea of two prevalent response tendencies characterized by orienting and motor inhibition or reduced stimulus processing and action initiation tendencies at different perceived threat imminence levels.


Subject(s)
Affect/physiology , Attention/physiology , Autonomic Nervous System/physiology , Beta Rhythm/physiology , Cortical Synchronization/physiology , Evoked Potentials, Visual/physiology , Fear/physiology , Heart Rate/physiology , Motor Cortex/physiology , Nerve Net/physiology , Parietal Lobe/physiology , Pattern Recognition, Visual/physiology , Adolescent , Adult , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...