Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Genet Mol Res ; 15(2)2016 May 23.
Article in English | MEDLINE | ID: mdl-27323072

ABSTRACT

The common bean has great social and economic importance in Brazil and is the subject of a high number of publications, especially in the fields of genetics and breeding. Breeding programs aim to increase grain yield; however, mitosis and meiosis represent under explored research areas that have a direct impact on grain yield. Therefore, the study of cell division could be another tool available to bean geneticists and breeders. The aim of this study was to investigate irregularities occurring during the cell cycle and meiosis in common bean. The common bean cultivar used was BRSMG Talismã, which owing to its high yield and grain quality is recommended for cultivation in Brazil. We classified the interphase nuclei, estimated the mitotic and meiotic index, grain pollen viability, and percentage of abnormalities in both processes. The mitotic index was 4.1%, the interphase nucleus was non-reticulated, and 19% of dividing somatic cells showed abnormal behavior. Meiosis also presented irregularities resulting in a meiotic index of 44.6%. Viability of pollen grains was 94.3%. These results indicate that the common bean cultivar BRSMG Talismã possesses repair mechanisms that compensate for changes by producing a large number of pollen grains. Another important strategy adopted by bean plants to ensure stability is the elimination of abnormal cells by apoptosis. As the common bean cultivar BRSMG Talismã is recommended for cultivation because of its good agronomic performance, it can be concluded that mitotic and meiotic irregularities have no negative influence on its grain quality and yield.


Subject(s)
Edible Grain/genetics , Meiosis/genetics , Mitosis/genetics , Phaseolus/genetics , Brazil , Breeding , Edible Grain/growth & development , Phaseolus/growth & development , Pollen/genetics
2.
Genet Mol Res ; 13(4): 10349-58, 2014 Dec 04.
Article in English | MEDLINE | ID: mdl-25501247

ABSTRACT

The number of pods per common bean plant is a primary component of grain yield, which depends on the number of flowers produced and on the flower set. Thus, a larger number of flowers per plant would increase yield. Lines with inflorescences that had a large number of flowers compared to common bean plants now under cultivation were identified. We analyzed the genetic control of this trait and its association with grain yield. The cultivar BRSMG Talismã was crossed with 2 lines, L.59583 and L.59692, which have a large number of flowers. The F1, F2, and F3 generations were obtained. These generations were assessed together with the parents in a randomized block experimental design with 2 replications. The traits assessed included length of inflorescence, number of pods per inflorescence, number of pods per plant, number of grains per plant, 100-grain weight, and grain yield per plant. Mean genetic components and variance were estimated. The traits length of inflorescence and number of pods per inflorescence exhibited genetic control with predominance that showed an additive effect. In the 2 crosses, genetic control of grain yield and of its primary components showed that the allelic interaction of dominance was high. The wide variability in the traits assessed may be used to increase yield of the common bean plant by increasing the number of flowers on the plant.


Subject(s)
Edible Grain/genetics , Inflorescence/genetics , Phaseolus/genetics , Crosses, Genetic , Edible Grain/growth & development , Flowers/genetics , Inflorescence/growth & development , Phaseolus/growth & development , Phenotype , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL