Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Curr Med Chem ; 31(26): 4138-4159, 2024.
Article in English | MEDLINE | ID: mdl-38375850

ABSTRACT

BACKGROUND: Thrombosis is one of the major causes of morbidity and mortality in a wide range of vessel diseases. Several studies have been conducted to identify antithrombotic agents from medicinal plants, and phenolic compounds (PCs) have been shown to effectively inhibit plasma coagulation and platelet aggregation. OBJECTIVES: This study aimed to conduct a survey of the natural PCs with proven antithrombotic and antiplatelet activities, as well as to evaluate by computational modeling the physicochemical and toxicological properties of these compounds using drug-likeness approaches. METHODS: The data were collected from the scientific database: 'Web of Science', 'Scifinder', 'Pubmed', 'ScienceDirect' and 'Google Scholar', the different classes of PCs with antithrombotic or antiplatelet effects were used as keywords. These molecules were also evaluated for their Drug-Likeness properties and toxicity to verify their profile for being candidates for new antithrombotic drugs. RESULTS: In this review, it was possible to register 85 lignans, 73 flavonoids, 28 coumarins, 21 quinones, 23 phenolic acids, 8 xanthones and 8 simple phenols. Activity records for tannins were not found in the researched databases. Of these 246 compounds, 213 did not violate any of Lipinski's rules of five, of which 125 (59%) showed non-toxicity, being promising candidates for new potential antithrombotic drugs. CONCLUSION: This review arouses interest in the isolation of phenolic compounds that may allow a new approach for the prevention of both arterial and venous thrombosis, with the potential to become alternatives in the prevention and treatment of cardiovascular diseases.


Subject(s)
Fibrinolytic Agents , Phenols , Platelet Aggregation Inhibitors , Platelet Aggregation Inhibitors/pharmacology , Platelet Aggregation Inhibitors/chemistry , Fibrinolytic Agents/pharmacology , Fibrinolytic Agents/chemistry , Humans , Phenols/chemistry , Phenols/pharmacology , Thrombosis/drug therapy , Animals , Biological Products/chemistry , Biological Products/pharmacology , Biological Products/isolation & purification , Platelet Aggregation/drug effects
2.
Immun Inflamm Dis ; 4(2): 201-212, 2016 06.
Article in English | MEDLINE | ID: mdl-27957328

ABSTRACT

Herissantia tiubae (HtE) is a Brazilian plant used in folk medicine to treat inflammatory diseases. Our aim was to determine whether the HtE has anti-inflammatory and anxiolytic effects in a murine model of asthma. Ovalbumin (OVA)-sensitized BALB/c mice were treated with HtE (50, 100, or 200 mg/kg) or dexamethasone before each OVA challenge. After the last challenge, animals were subjected to anxiety tests and respiratory measurements. Following euthanasia, we quantified immune cells in the bronchoalveolar lavage (BAL), serum IgE titer and cytokine levels, cellular infiltration and mucus content in the lung tissues, and cellular composition of the mediastinal lymph nodes. OVA challenge in sensitized animals caused: (1) reduction of mean respiratory and dominant respiratory rate (from 398 ± 12 to 286 ± 20 cicles per minute (cpm) and from 320 ± 14 to 162 ± 15 cpm, respectively); (2) increase in behavioral markers of anxiety tests; (3) substantial pro-inflammatory effects, including rise in OVA-specific IgE titer (from 0 to 1:2048) and these inflammatory effect diminished the titer to 1:512 after HtE treatment; rise in plasma IL-13 (from 13 ng/mL in saline to 227 ng/mL in OVA and HtE treatment restored to 1.29 ng/mL; rise in total BAL cell count (from 0.742 cells/mL in saline to 11.77 cells/mL in OVA), with prominent eosinophilia. H. tiubae extract affected respiratory parameters similarly to aminophylline, behavioral changes comparable to diazepam, and inflammation being as efficient as dexamethasone. H. tiubae extract (HtE) possesses both anti-inflammatory and anxiolytic properties in the murine model of asthma.


Subject(s)
Anti-Anxiety Agents/therapeutic use , Anti-Asthmatic Agents/therapeutic use , Asthma/therapy , Plants, Medicinal , Animals , Anxiety/therapy , Brazil , Bronchoalveolar Lavage Fluid , Hydroxyethylrutoside , Mice , Ovalbumin
3.
Molecules ; 18(9): 11086-99, 2013 Sep 10.
Article in English | MEDLINE | ID: mdl-24025457

ABSTRACT

The phytochemical study of Cordia exaltata Lam. (Boraginaceae) led to the isolation, through chromatographic techniques, of nineteen secondary metabolites: 8,8'dimethyl-3,4,3',4'-dimethylenedioxy-7-oxo-2,7'cyclolignan (1), 8,8'-dimethyl-4,5-dimethoxy-3',4'-methylenodioxy-7-oxo-2,7'cyclolignan (2), sitosterol (3a), stigmasterol (3b), sitosterol-3-O-ß-D-glucopyranoside (4a), stigmasterol-3-O-ß-D-glucopyranoside (4b), phaeophytin A (5), 13²-hydroxyphaeophytin A (6), 17³-ethoxypheophorbide A (7), 13²-hydroxy-17³-ethoxypheophorbide A (8), m-methoxy-p-hydroxybenzaldehyde (9), (E)-7-(3,4-dihydroxyphenyl)-7-propenoic acid (10), 1-benzopyran-2-one (11), 7-hydroxy-1-benzopyran-2-one (12), 2,5-bis-(3',4'-methylenedioxiphenyl)-3,4-dimethyltetrahydrofuran (13), 3,4,5,3',5'-pentamethoxy-1'-allyl-8.O.4'-neolignan (14), 3,5,7,3',4'-pentahydroxyflavonol (15), 5,7-dihydroxy-4'-methoxyflavone (16), 5,8-dihydroxy-7,4'-dimethoxyflavone (17), kaempherol 3-O-ß-D-glucosyl-6''-α-L-ramnopyranoside (18) and kaempherol 3,7-di-O-α-L-ramnopyranoside (19). Their structures were identified by ¹H and ¹³C-NMR using one and two-dimensional techniques. In addition, the antimicrobial activity of compounds 1, 2, 13 and 14 against bacteria and fungi are reported here for the first time.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Cordia/chemistry , Lignans/pharmacology , Plant Extracts/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Candida/drug effects , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Lignans/chemistry , Lignans/isolation & purification , Magnetic Resonance Spectroscopy , Microbial Sensitivity Tests , Molecular Conformation , Plant Components, Aerial/chemistry , Plant Extracts/chemistry , Plant Extracts/isolation & purification
4.
Cell Biol Toxicol ; 29(3): 175-87, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23605514

ABSTRACT

Immunomodulatory actions exerted by some classes of tryptamines, such as benzoyltryptamine analogues, suggest these molecules as promising candidates to develop new therapies to treat conditions associated to acute and chronic pain and inflammation. N-salicyloyltryptamine (STP) was observed to act as an anticonvulsive agent and exert antinociceptive effects in mouse. In the present work, we performed a screening of cytotoxic, cytoprotective, immunomodulatory, and redox properties of STP in RAW 264.7 macrophages challenged with hydrogen peroxide and LPS. Our results show that STP presents no cytotoxicity in the range of 0.001 to 1 µg/mL, but doses of 50 and 100 µg/mL caused loss of cell viability (IC(50) = 22.75 µg/mL). Similarly, STP at 0.001 to 1 µg/mL did not cause oxidative stress to RAW 264.7 cells, although it did not prevent cell death induced by H(2)O(2) 0.5 mM. At 1 µg/mL, STP reversed some redox and inflammatory parameters induced by LPS. These include thiol (sulfhydryl) oxidation, superoxide dismutase activation, and morphological changes associated to macrophage activation. Besides, STP significantly inhibited LPS-induced TNF-α and IL-1ß release, as well as CD40 and TNF-α protein upregulation. Signaling events induced by LPS, such as phosphorylation of ERK 1/2 and IκBα and p65 nuclear translocation (NF-kB activation) were also inhibited by STP. These data indicate that STP is able to modulate inflammatory parameters at doses that do not interfere in cell viability.


Subject(s)
Immunomodulation , Macrophage Activation/drug effects , Macrophages/drug effects , Salicylates/pharmacology , Tryptamines/pharmacology , Animals , Cell Line , Cell Survival/drug effects , Gene Expression Regulation , Hydrogen Peroxide/pharmacology , I-kappa B Proteins/genetics , I-kappa B Proteins/immunology , Inhibitory Concentration 50 , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/metabolism , Lipopolysaccharides/pharmacology , Macrophages/cytology , Macrophages/immunology , Mice , Mitogen-Activated Protein Kinase 1/genetics , Mitogen-Activated Protein Kinase 1/immunology , Mitogen-Activated Protein Kinase 3/genetics , Mitogen-Activated Protein Kinase 3/immunology , NF-KappaB Inhibitor alpha , NF-kappa B/genetics , NF-kappa B/immunology , Oxidative Stress , Signal Transduction , Superoxide Dismutase/genetics , Superoxide Dismutase/immunology , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
5.
Molecules ; 18(3): 2769-77, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23455668

ABSTRACT

The phytochemical study of Sida rhombifolia L. (Malvaceae) led to the isolation through chromatographic techniques of eleven secondary metabolites: sitosterol (1a) and stigmasterol (1b), sitosterol-3-O-b-D-glucopyranoside (2a) and stigmasterol-3-O-b-D-glucopyranoside (2b), phaeophytin A (3), 17³-ethoxypheophorbide A (4), 13²-hydroxy phaeophytin B (5), 17³-ethoxypheophorbide B (6), 5,7-dihydroxy-4'-methoxyflavone (7), cryptolepinone (8) and a salt of cryptolepine (9). Their structures were identified by ¹H- and ¹³C-NMR using one- and two-dimensional techniques. In addition, the vasorelaxant activity of cryptolepinone in rat mesenteric artery rings is reported herein for the first time.


Subject(s)
Malvaceae/chemistry , Vasodilator Agents/chemistry , Animals , Endothelial Cells/drug effects , Malvaceae/metabolism , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Plant Extracts/chemistry , Rats , Vasodilator Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL