Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(2): e202301616, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38161186

ABSTRACT

Secretory structures in plants play a crucial role in producing bioactive compounds. Despite the potential of the Swartzia genus, comprehensive studies in this context are still scarce. Swartzia is a legume tree (Fabaceae) that occurs in the Brazilian Atlantic Forest, a biodiversity hotspot, and includes species such as Swartzia flaemingii. Therefore, we aim to achieve: (1) identify and characterize the key secretory sites responsible for saponin production in S. flaemingii leaflets; (2) confirm the presence of saponins in S. flaemingii leaves by comparing them with known chemical profiles of other Swartzia species; (3) assess the potential hemolytic and cytotoxic effects of crude leaf extracts. Our investigation unveils the presence of phenolic idioblasts, mucilage cells, and articulate laticifers, which play pivotal roles in defense and adaptation. Notably, we report the first-ever ultrastructural details of laticifers in a legume species. Additionally, oleanane-type saponins were identified in the leaves, giving insights into the chemotaxonomic profile of Swartzia. The crude extracts show low cytotoxicity levels, showcasing as a promising alternative source of saponins. This investigation reinforces the importance of conserving plants in threatened regions like the Atlantic Forest, a global biodiversity hotspot facing substantial anthropogenic pressures.


Subject(s)
Fabaceae , Saponins , Fabaceae/chemistry , Trees , Saponins/pharmacology , Saponins/chemistry , Brazil
2.
Environ Monit Assess ; 194(4): 283, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35294661

ABSTRACT

Predicting the geographic distribution of plants that provide ecosystem services is essential to understand the adaptation of communities and conserve that group toward climate change. Predictions can be more accurate if changes in physiological characteristics of species due to those changes are included. Thus, we aimed to evaluate the impacts of climate change on the different hierarchical levels of Apuleia leiocarpa (Vogel) J. F. Macbr. (Fabaceae). Therefore, we experimentally evaluate the effect of different temperatures on the initial development (vigor) and estimate the impact of climate change on the potential geographic distribution of the species, using ecological niche approaches. For the experiment, we used 11 temperature intervals of 2 °C ranging from 21 to 41 °C. We used ecological niche modeling techniques (ENM) to predict the species' environmental suitability in future climate scenarios. The association between the experiment and niche models was obtained by testing the relationships of temperature increase on the species vigor and geographic distribution. This conceptual model to determine the direct and indirect effects of temperature was generated using the methodological framework of structural equation models. The experiment showed that the seeds had the highest growth at 31 °C. ENMs indicated that due to climate change, there is a tendency for the plant to migrate to regions with milder temperatures. However, such regions may be unsuitable for the plant since they do not have ideal temperatures to germinate, which may cause a drastic reduction in their availability in a future climate change scenario. The inclusion of seed germination through experimental research allowed us to detect an area that is less suitable for germination despite being climatically suitable for the species. Thus, research that integrates the effect of climate on the different stages of the organism's development is essential to understand the impact of climate change on biodiversity.


Subject(s)
Climate Change , Ecosystem , Animals , Endangered Species , Environmental Monitoring , Germination , Seeds
SELECTION OF CITATIONS
SEARCH DETAIL
...