Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Endocrinol Metab ; 97(5): E781-5, 2012 May.
Article in English | MEDLINE | ID: mdl-22419705

ABSTRACT

The TSH receptor (TSHR) on orbital fibroblasts (OF) is a proposed target of the autoimmune attack in Graves' ophthalmopathy. In the present study, we tested whether the novel low-molecular-weight (LMW) TSHR antagonist Org-274179-0 inhibits cAMP production induced by rhTSH, Graves' disease IgG (GD-IgG), or M22 (a potent human monoclonal TSHR stimulating antibody) in cultured and differentiated OF from Graves' ophthalmopathy patients. cAMP production significantly increased after incubation either with 10 mU/ml rhTSH (3-fold; P ≤ 0.05), 1 mg/ml GD-IgG (2-fold; P ≤ 0.05), or 500 ng/ml M22 (5-fold; P ≤ 0.05). Incubation with the LMW TSHR antagonist dose dependently inhibited rhTSH, GD-IgG as well as the M22-induced cAMP production at nanomolar concentrations; complete blockade was affected at 10(-6) M. Our results suggest that GD-IgG- and M22-induced cAMP production in differentiated OF is exclusively mediated via the TSHR because it can be completely blocked by the LMW TSHR antagonist, Org 274179-0.


Subject(s)
Aminoquinolines/pharmacology , Antibodies, Monoclonal/pharmacology , Cyclic AMP/biosynthesis , Fibroblasts/drug effects , Graves Disease/immunology , Immunoglobulin G/pharmacology , Receptors, Thyrotropin/antagonists & inhibitors , Thyrotropin/pharmacology , Animals , CHO Cells , Cricetinae , Fibroblasts/metabolism , Humans , Orbit/cytology
2.
Br J Pharmacol ; 165(7): 2314-24, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22014107

ABSTRACT

BACKGROUND AND PURPOSE: Graves' disease (GD) is an autoimmune disease in which the thyroid is overactive, producing excessive amounts of thyroid hormones, caused by thyroid-stimulating hormone (TSH) receptor-stimulating immunoglobulins (TSIs). Many GD patients also suffer from thyroid eye disease (Graves' ophthalmopathy or GO), as TSIs also activate TSH receptors in orbital tissue. We recently developed low molecular weight (LMW) TSH receptor antagonists as a novel therapeutic strategy for the treatment of GD and GO. Here, we determined the molecular pharmacology of a prototypic, nanomolar potent LMW TSH receptor antagonist, Org 274179-0. EXPERIMENTAL APPROACH: Using CHO cells heterogeneously expressing human TSH receptors and rat FRTL-5 cells endogenously expressing rat TSH receptors, we determined the potency and efficacy of Org 274179-0 at antagonizing TSH- and TSI-induced TSH receptor signalling and its cross-reactivity at related follicle-stimulating hormone and luteinizing hormone receptors. We analysed the allosteric mode of interaction of Org 274179-0 and determined whether it is an inverse agonist at five naturally occurring, constitutively active TSH receptor mutants. KEY RESULTS: Nanomolar concentrations of Org 274179-0 completely inhibited TSH (and TSI)-mediated TSH receptor activation with little effect on the potency of TSH, in accordance with an allosteric mechanism of action. Conversely, increasing levels of TSH receptor stimulation only marginally reduced the antagonist potency of Org 274179-0. Org 274179-0 fully blocked the increased basal activity of all the constitutively active TSH receptor mutants tested with nanomolar potencies. CONCLUSIONS AND IMPLICATIONS: Nanomolar potent TSH receptor antagonists like Org 274179-0 have therapeutic potential for the treatment of GD and GO.


Subject(s)
Aminoquinolines/pharmacology , Receptors, Thyrotropin/antagonists & inhibitors , Adenylyl Cyclases/metabolism , Aminoquinolines/chemistry , Animals , CHO Cells , Cricetinae , Cricetulus , Drug Evaluation, Preclinical , Graves Disease/drug therapy , Graves Disease/immunology , Humans , Molecular Weight , Mutagenesis, Site-Directed , Rats , Receptors, Thyrotropin/genetics , Receptors, Thyrotropin/metabolism , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Signal Transduction/drug effects , Thyrotropin/metabolism
3.
Thyroid ; 21(2): 169-76, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20954819

ABSTRACT

BACKGROUND: Both expression of the thyrotropin receptor (TSHR) and the production of hyaluronan (HA) by orbital fibroblasts (OF) have been proposed to be implicated in the pathogenesis of Graves' ophthalmopathy (GO). HA is synthesized by three types of HA synthase. We hypothesized that TSHR activation by recombinant human TSH (rhTSH) and TSHR-stimulating Graves' disease immunoglobulins (GD-IgGs) via induced cyclic adenosine monophosphate (cAMP) signaling increases HA synthesis in differentiated OF from GO patients. METHODS: Cultured human OF, obtained during decompression surgery from 17 patients with severe GO, were stimulated in vitro to differentiate into adipocytes. Differentiation was evaluated by phase-contrast microscopy. The differentiated OF were stimulated by rhTSH or by TSHR-stimulating GD-IgG. We measured cAMP using a biochemical assay, HA synthase mRNA expression by quantitative polymerase chain reaction, and HA in the supernatant by enzyme-linked immunosorbent assay. RESULTS: All differentiated OF cultures expressed higher levels of TSHR mRNA than nondifferentiated OF cultures. Stimulation by rhTSH induced a marked cAMP response in 11 of 12 differentiated OF cultures, but no measurable HA response in all but one differentiated OF cultures. By contrast, stimulation by GD-IgG induced a moderate cAMP response in a number of differentiated OF cultures, but a marked HA response in the majority of differentiated OF cultures. CONCLUSION: Stimulation of differentiated OF by GD-IgG, but not by rhTSH, induces HA synthesis in the majority of patients, suggesting that in most patients TSHR-mediated cAMP signaling does not play a pivotal role in GD-IgG-induced HA synthesis in differentiated OF cultures.


Subject(s)
Cyclic AMP/metabolism , Fibroblasts/metabolism , Graves Disease/immunology , Graves Ophthalmopathy/pathology , Hyaluronic Acid/metabolism , Immunoglobulin G/pharmacology , Receptors, Thyrotropin/metabolism , Signal Transduction/physiology , Cell Differentiation , Cells, Cultured , Fibroblasts/drug effects , Fibroblasts/pathology , Humans , Immunoglobulin G/metabolism , Interleukin-1beta/pharmacology , Orbit/pathology , Recombinant Proteins/pharmacology , Thyrotropin/pharmacology
4.
Thyroid ; 20(5): 535-44, 2010 May.
Article in English | MEDLINE | ID: mdl-20384487

ABSTRACT

BACKGROUND: Orbital fibroblasts are involved in the pathogenesis of Graves' ophthalmopathy (GO) by producing hyaluronan (HA), synthesized by three types of hyaluronan synthases (HAS1, HAS2, and HAS3). Thyrotropin receptors (TSHR) expressed in orbital fibroblasts activate the cyclic adenosine monophosphate (cAMP) pathway. Only sparse data are available at present supporting a role for TSHR activation in the regulation of HA in GO orbital fibroblasts. We hypothesize that TSHR activation, via cAMP signaling, results in induction of HAS1-3 mRNA expression and HA production by nondifferentiated GO orbital fibroblasts. METHODS: Cultured nondifferentiated orbital fibroblasts obtained during orbital decompression surgery from 15 GO patients were stimulated with recombinant human TSH (rhTSH), TSHR-stimulating Graves' disease immunoglobulin G (GD-IgG) or forskolin (FSK), or interleukin-1beta (IL-1beta). RESULTS: FSK significantly stimulated cAMP production, HAS1 and HAS3 mRNA expression, and HA secretion in orbital fibroblasts. IL-1beta slightly induced cAMP production, but induced HAS mRNA expression of all three isoforms and HA secretion. In contrast, the effects of rhTSH and GD-IgG on cAMP were modest and absent, respectively, and on HAS mRNA and HA synthesis were completely absent. CONCLUSIONS: The strong increase in cAMP synthesis by FSK in nondifferentiated GO orbital fibroblasts results in increased HA synthesis, but TSHR activation by rhTSH or GD-IgG does not result in altered HA synthesis. Our results do not support a predominant role for GD-IgGs in the accumulation of orbital glycosaminoglycans; cytokines like IL-1beta seem largely responsible for excessive glycosaminoglycan production by nondifferentiated orbital fibroblasts in early immunopathogenesis of GO.


Subject(s)
Cyclic AMP/biosynthesis , Fibroblasts/metabolism , Graves Disease/immunology , Graves Ophthalmopathy/immunology , Graves Ophthalmopathy/metabolism , Hyaluronic Acid/biosynthesis , Immunoglobulin G/pharmacology , Receptors, Thyrotropin/immunology , Thyrotropin/therapeutic use , Bucladesine/pharmacology , Cells, Cultured , Colforsin/pharmacology , Fibroblasts/drug effects , Humans , Interleukin-1beta/biosynthesis , Luciferases/metabolism , Orbit/cytology , RNA/biosynthesis , RNA/isolation & purification , Reverse Transcriptase Polymerase Chain Reaction
5.
Endocrinology ; 149(1): 28-31, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17884944

ABSTRACT

Reversal of cardiac fibrosis is a major determinant of the salutary effects of mineralocorticoid receptor antagonists in heart failure. Recently, R-fadrozole was coined as an aldosterone biosynthesis inhibitor, offering an appealing alternative to mineralocorticoid receptor antagonists to block aldosterone action. The present study aimed to evaluate the effects of R- and S-fadrozole on plasma aldosterone and urinary aldosterone excretion rate and to compare their effectiveness vs. the mineralocorticoid receptor antagonist potassium canrenoate to reverse established cardiac fibrosis. Male lean spontaneously hypertensive heart failure (SHHF) rats (40 wk) were treated for 8 wk by sc infusions of low (0.24 mg/kg.d) or high (1.2 mg/kg.d) doses of R- or S-fadrozole or by potassium canrenoate via drinking water (7.5 mg/kg.d). At the high dose, plasma aldosterone levels were decreased similarly by R- and S-fadrozole, whereas urinary aldosterone excretion rate was reduced only by S-fadrozole. In contrast, whereas at the high dose, R-fadrozole effectively reversed preexistent left ventricular interstitial fibrosis by 50% (vs. 42% for canrenoate), S-fadrozole was devoid of an antifibrotic effect. The low doses of the fadrozole enantiomers did not change cardiac fibrosis or plasma aldosterone but similarly reduced urinary aldosterone excretion rate. In conclusion, R-fadrozole may possess considerable therapeutic merit because of its potent antifibrotic actions in the heart. However, the observed discordance between the aldosterone-lowering and antifibrotic effects of the fadrozole enantiomers raises some doubt about the mechanism by which R-fadrozole diminishes cardiac collagen and about the generality of the concept of lowering aldosterone levels to treat the diseased heart.


Subject(s)
Aldosterone/blood , Fadrozole/chemistry , Fadrozole/therapeutic use , Heart Failure/prevention & control , Heart/drug effects , Myocardium/pathology , Aldosterone/urine , Animals , Canrenoic Acid/pharmacology , Collagen Type I/genetics , Collagen Type I/metabolism , Collagen Type I, alpha 1 Chain , Collagen Type III/genetics , Collagen Type III/metabolism , Drug Evaluation, Preclinical , Fibrosis , Gene Expression Regulation/drug effects , Heart Failure/urine , Male , Mineralocorticoid Receptor Antagonists/pharmacology , Myocardium/metabolism , Rats , Rats, Inbred SHR , Stereoisomerism , Structure-Activity Relationship , Treatment Outcome
6.
Steroids ; 68(3): 235-43, 2003 Mar.
Article in English | MEDLINE | ID: mdl-12628686

ABSTRACT

To exclude that aromatization plays a role in the estrogenic activity of tibolone, we studied the effect tibolone and metabolites on the aromatization of androstenedione and the aromatization of tibolone and its metabolites to 7alpha-methyl-17alpha-ethynylestradiol (7alpha-MEE) by human recombinant aromatase. Testosterone (T), 17alpha-methyltestosterone (MT), 19-nortestosterone (Nan), 7alpha-methyl-19-nortestosterone (MENT) and norethisterone (NET) were used as reference compounds. Sensitive in vitro bioassays with steroid receptors were used to monitor the generation of product and the reduction of substrate. LC-MSMS without derivatization was used for structural confirmation. A 10 times excess of tibolone and its metabolites did not inhibit the conversion of androstenedione to estrone by human recombinant aromatase as determined by estradiol receptor assay whereas T, MT, Nan, and MENT inhibited the conversion for 75, 53, 85 and 67%, respectively. Tibolone, 3alpha- and 3beta-hydroxytibolone were not converted by human aromatase whereas the estrogenic activity formed with the Delta4-isomer suggests a conversion rate of 0.2% after 120 min incubation. In contrast T, MT, Nan, and MENT were completely converted to their A-ring aromates within 15 min while NET could not be aromatized. Aromatization of T, MT, Nan and MENT was confirmed with LC-MSMS. Structure/function analysis indicated that the 17alpha-ethynyl-group prevents aromatization of (19-nor)steroids while 7alpha-methyl substitution had no effect. Our results with the sensitive estradiol receptor assays show that in contrast to reference compounds tibolone and its metabolites are not aromatized.


Subject(s)
Aromatase/metabolism , Ethinyl Estradiol/analogs & derivatives , Ethinyl Estradiol/metabolism , Norpregnenes/metabolism , Androgens/metabolism , Animals , Aromatase Inhibitors , CHO Cells , Cell Line , Chromatography, Liquid/methods , Cricetinae , Humans , Imidazoles/pharmacology , Mass Spectrometry/methods , Phenalenes/pharmacology , Substrate Specificity , Time Factors
7.
Steroids ; 68(1): 21-30, 2003 Jan.
Article in English | MEDLINE | ID: mdl-12475720

ABSTRACT

The receptor profiles and in vivo activity of tibolone, and its primary metabolites, Delta(4)-isomer, and 3alpha- and 3beta-hydroxytibolone, were studied and compared to those of structurally related compounds. The Delta(4)-isomer was the strongest binder and activator of the progesterone receptor (PR); tibolone was 10 times weaker in binding and half as potent in transactivation of PR; 3alpha- and 3beta-hydroxytibolone did not bind or activate PR. In rabbits oral tibolone produced a minor progestagenic effect in the endometrium, whereas co-administration of tibolone and the anti-estrogen ICI 164,384 unmasked tibolone's progestagenic effect. 3-Hydroxytibolones were the strongest binders and activators of the estrogen receptors (ERs), with greater affinity for ERalpha than for ERbeta. Tibolone showed weaker binding and activation of both ERs and the Delta(4)-isomer has a binding and activation activity of less than 0.1% of E2 for ERalpha or ERbeta. Tamoxifen and 4-hydroxytamoxifen showed partial ERalpha agonistic effects with a maximal response of 12% and raloxifene of 3-5%. Oral administration of 1mg tibolone to ovariectomized rats induced an estrogenic effect on vaginal epithelium. The Delta(4)-isomer was a stronger binder and activator of the androgen receptor (AR) than tibolone; both 3-hydroxytibolones did not bind or activate AR. Introducing a 7alpha-methyl group decreased progestagenic and increased androgenic activity. We conclude that the progestagenic and androgenic activities of tibolone are mediated by the Delta(4)-isomer, and the estrogenic activity, by the 3-hydroxytibolones. The estrogenic activity of the 3-hydroxytibolones masked the progestagenic activity of tibolone in rabbit endometrium. Full estrogenic response was observed in rat vaginal tissue after oral administration of tibolone.


Subject(s)
Endocrine System/drug effects , Estrogen Receptor Modulators/pharmacology , Norpregnenes/metabolism , Norpregnenes/pharmacology , Receptors, Steroid/drug effects , Animals , Dose-Response Relationship, Drug , Endometrium/drug effects , Estrogen Receptor Modulators/metabolism , Estrogen Receptor alpha , Estrogen Receptor beta , Estrogens/metabolism , Estrogens/pharmacology , Female , Humans , Progestins/metabolism , Progestins/pharmacology , Rabbits , Rats , Receptors, Estrogen/agonists , Receptors, Estrogen/metabolism , Receptors, Progesterone/agonists , Receptors, Progesterone/metabolism , Receptors, Steroid/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...